Modeling Potential Impacts of Climate Change on the Distributions of 6 GGBN Priority Plants

Heather Rustigian-Romsos Alexandra Syphard Conservation Biology Institute

Climate Change & Range Shifts

- Impacts of CC on biodiversity increasingly evident
- Altered climate conditions can exceed species' tolerances
 - Climatically suitable habitat may increase, decline, or shift
 - Persistence ~ dispersal & establishment to suitable habitat
- Changes in climate suitability will be species-specific
 - Not uniform across communities or current ranges.
- Maps delineating current & future habitat suitability needed:
 - Targeted monitoring
 - Scenario planning
 - Potential refugia protection
 - Proactive and adaptive management and decision making

US Forest Service illustration by Savannah Halleaux

Species Distribution Models (SDMs)

- Models of species-environment relationships
- Interpolate biological survey data in space
 - Statistical and machine learning methods
- <u>Predict</u> occurrence <u>for locations</u> where survey data are lacking

Survey Data

Environmental Data

Prediction Map

Species distribution=f(environmental data)→Prediction

SDM Limitations

- Data issues
 - E.g., sample size, resolution, appropriate predictors

- May not account for biotic interactions or disturbance agents
 - E.g., competition, facilitation, fire, disease, pests
- Accuracy varies by species traits
 - E.g., rarity, range size, body size, mobility
- No demographic processes
 - E.g., dispersal, fecundity, mortality, carrying capacity
- Methodological uncertainty
 - Model algorithm found to be biggest source
 - Can be compounded with other sources of uncertainty such as climate models and data bias, etc.

Ensemble SDMs

- 'Fusion' of predictions from multiple SDM model types
- Decreases prediction uncertainty
- Highlights agreement among different model outputs
- Often more robust & reliable than single model predictions

A Modeling Framework to Estimate and Project Species Distributions in Space and Time Niels Raes¹ and Jesús Aguirre-Gutiérrez^{1,2,3}

Objective

Use ensemble SDM to evaluate climate change effects on distribution and occurrence of 6 priority GGBN plant species

For each species:

- Model baseline distributions at regional scales;
- Identify important drivers of distributions;
- Project potential future (2070-2099) habitat under 3 GCMs;
- Produce mapped predictions for baseline and future in the GGBN;
- Evaluate potential impacts of climate by quantifying area likely to:
 - Persist (remain suitable),
 - Expand (become suitable),
 - Contract (become unsuitable)

GGBN Priority Trees and Shrubs

Species	Lifeform Description	Distribution/Associated Communities
Chamise (Adenostoma fasciculatum)	Shade-intolerant evergreen shrub	Most common chaparral species statewide
Coyote Brush (<i>Baccharis pilularis</i>)	Shade-intolerant evergreen shrub	Outer Coast Ranges from northern Mex. to OR. Dominant shrub in northern coastal scrub communities
Douglas Fir (<i>Pseudotsuga</i> <i>menziesii</i>)	Long-lived, large, coniferous, evergreen tree	Adapted to moist, mild climate, grows from BC to central CA
Coast Live Oak (<i>Quercus agrifolia</i>)	Drought-resistant, broadleaf evergreen tree	Occurs in CA and northern Mex., lower- elevation oak woodlands of CA
California Black Oak (<i>Quercus kelloggii</i>)	Highly drought-tolerant deciduous tree	Occurs in OR and CA, most common in ponderosa pine and mixed-conifer forests, also mixed-oak woodlands
Coast Redwood (Sequoia sempervirens)	Long-lived, large, shade- tolerant, monoecious evergreen tree	Found in coastal northern CA and southwestern OR. Limited to fog belt zone or high moisture areas

Climate Scenarios

Model Extents, Inputs, & Methods

- Model extents: 5 km buffer of ranges within CA Floristic Province
- Presence-absence data 1980-2023 (CDFW, CCH, Calflora)
- Environmental predictor layers:
 - Climate and Hydrology (1921-1950/1951-1980/1981-2010)
 - Topography
 - Soils
- 6 presence-absence SDM algorithms (fit in flexSDM R package):
 - Generalized additive (GAM),
 - Generalized boosted regression (BRT),
 - Generalized linear (GLM),
 - Neural networks (ANN),
 - Random forest (RF), and
 - Support vector machine (SVM) models

Modeling Details

Chamise (Adenostoma fasciculatum)

Winter Minimum Temperature (°C; 1981-2010)
Climatic Water Deficit (mm; 1981-2010)
Actual Evapotranspiration (mm; 1981-2010)
Annual Runoff (mm; 1981-2010)
Southwest Index
Solar Insolation Index
Topographic Wetness Index
Terrain Ruggedness
Soil Thickness
Soil pH
Percent Clay
Percent Sand
Soil Porosity
Productivity Index
Drainage Index

ADFA Consensus

20 mi

Scenario	GGBN Suitable Area (km²)	Mean Suitability
Baseline	542	0.06
CNRM-CM5	1480	0.17
CCSM4	1501	0.17
MIROC-ESM	3118	0.36

Coyote Brush (Baccharis pilularis)

Summer Precipitation (mm; 1981-2010)
Summer Max. Temperature (°C; 1981-2010)
Winter Minimum Temperature (°C; 1981-2010)
Annual Runoff (mm; 1981-2010)
Terrain Ruggedness
Topographic Heterogeneity
Soil pH
Percent Clay
Drainage Index

BAPI MEANW MIROC-ESM

BAPI Consensus

20 mi

CNRM-CM

Scenario	GGBN Suitable Area (km²)	Mean Suitability
Baseline	4848	0.51
CNRM-CM5	6260	0.74
CCSM4	6236	0.76
MIROC-ESM	6267	0.77

Douglas Fir (*Pseudotsuga menziesii*)

Winter Precipitation (mm; 1981-2010)
Summer Max. Temperature (°C; 1981-2010)
Actual Evapotranspiration (mm; 1981-2010)
Solar Insolation Index
Topographic Wetness Index
Terrain Ruggedness
Available Water Capacity
Percent Clay
Soil Porosity

PSME Consensus

Scenario	GGBN Suitable Area (km²)	Mean Suitability
Baseline	4719	0.49
CNRM-CM5	5845	0.63
CCSM4	5195	0.54
MIROC-ESM	2203	0.18

Coast Live Oak (*Quercus agrifolia*)

Summer Precipitation (mm; 1921-1950)
Summer Max. Temperature (°C; 1921-1950)
Winter Minimum Temperature (°C; 1921-1950)
Annual Runoff (mm; 1921-1950)
Slope (%)
Southwest Index
Terrain Ruggedness
Soil Thickness
Soil pH
Available Water Capacity
Percent Clay
Percent Sand
Soil Porosity
Drainage Index

Coast Live Oak MIROC-ESM

QUAG Consensus

	Unsuitable
	Baseline Unsuitable, 3 GCMs Suitable
	Baseline Unsuitable, 2 GCMs Suitable
	Baseline Unsuitable, 1 GCM Suitable
	Baseline Suitable, 3 GCMs Suitable
	Baseline Suitable, 2 GCMs Suitable
	Baseline Suitable, 1 GCM Suitable
	Baseline Suitable, No GCMs Suitable
	GGBN Terrestrial Boundary
N	0 5 10 20 30 km

Scenario	GGBN Suitable Area (km²)	Mean Suitability
Baseline	3847	0.43
CNRM-CM5	3343	0.36
CCSM4	4581	0.51
MIROC-ESM	4401	0.48

California Black Oak (*Quercus kelloggii*)

Summer Precipitation (mm· 1921-1950)
Summer Max. Temperature (°C; 1921-1950)
Winter Minimum Temperature (°C; 1921-1950)
Actual Evapotranspiration (mm; 1921-1950)
Annual Runoff (mm; 1921-1950)
Southwest Index
Solar Insolation Index
Topographic Wetness Index
Terrain Ruggedness
Soil Thickness
Soil pH
Available Water Capacity
Percent Clay
Percent Sand
Soil Porosity

	1.0.00	-		
OU	KE	Con	ser	21121
			0.04	1040

Scenario	GGBN Suitable Area (km²)	Mean Suitability		
Baseline	3195	0.30		
CNRM-CM5	1923	0.14		
CCSM4	2368	0.18		
MIROC-ESM	123	0.01		

Coast Redwood (Sequoia sempervirens)

Summer Precipitation (mm; 1951-1980)
Summer Max. Temperature (°C; 1951-1980)
Winter Minimum Temperature (°C; 1951-1980)
Actual Evapotranspiration (mm; 1951-1980)
Annual Runoff (mm; 1951-1980)
Southwest Index
Topographic Heterogeneity
Soil Thickness
Soil pH
Available Water Capacity
Percent Clay
Percent Sand
Soil Porosity
Drainage Index

Coast Redwood MIROC-ESM

SESE MEANW MIROC-ESM

SESE Consensus

	Unsuitable
	Baseline Unsuitable, 3 GCMs Suitable
	Baseline Unsuitable, 2 GCMs Suitable
	Baseline Unsuitable, 1 GCM Suitable
	Baseline Suitable, 3 GCMs Suitable
	Baseline Suitable, 2 GCMs Suitable
	Baseline Suitable, 1 GCM Suitable
	Baseline Suitable, No GCMs Suitable
	GGBN Terrestrial Boundary
0	5 10 20 30 km

20 mi

10

Scenario	GGBN Suitable Area (km²)	Mean Suitability
Baseline	4418	0.42
CNRM-CM5	4000	0.30
CCSM4	5062	0.45
MIROC-ESM	3805	0.27

- Thanks to Danny Franco, Alison Forrestel, Laura Hilberg, & Kai Henifin
- Questions?

Model Evaluation

Species	Sens. (TPR)	Spec. (TNR)	AUC	TSS	Boyce	Jaccard	Sorensen
Chamise	0.80	0.81	0.88	0.61	0.96	0.72	0.83
Coyote Brush	0.77	0.65	0.77	0.42	0.94	0.64	0.78
Douglas Fir	0.84	0.68	0.83	0.52	0.91	0.64	0.77
Coast Live Oak	0.82	0.62	0.75	0.44	0.89	0.68	0.80
California Black Oak	0.84	0.78	0.87	0.63	0.99	0.66	0.80
Coast Redwood	0.85	0.87	0.94	0.72	0.97	0.67	0.80

TPR: True Positive Rate (Sensitivity), proportion of observed positives that were predicted to be positive, 0-1 TNR: True Negative Rate (Specificity), proportion of observed negatives that were predicted to be negatives, 0-1

AUC: Area Under ROC (receiver operating characteristic) Curve, measure of performance across all possible thresholds, 0-1

0.5–0.7 = low performance, 0.7–0.9 moderate, and > 0.9 high

- TSS: True Skill Statistic, {1 maximum(sensitivity + specificity)} where sensitivity and specificity are calculated based on the probability threshold for which their sum is maximized, -1-1, values close to 0 or negative indicate poor performance, +1 = perfect match between observed and predicted distributions
- Boyce: Continuous Boyce Index, intended for presence-only data, here using presence-absence, Spearman rank correlation coefficient between proportion of sites in each prediction class and expected proportion of predictions in each prediction class based on proportion of landscape in that class, -1 to 1. Values > 0 indicate the model's output is positively correlated with true probability of presence. Values < 0 indicate it is negatively correlated with the true probability of presence Jaccard: Jaccard index or similarity coefficient, 0-1, higher values indicate more similarity

Sorensen: Sorensen similarity index, similar to Jaccard, 0-1, higher values indicate more similarity

Percent Change Across CFP, 1981-2010 to 2070-2099

Туре	Predictor	Source				
Climate and Hydrology	Annual Precipitation (mm)	2014 California Basin Characterization Model (BCM)				
(Historical 30-year Summer Precipitation (mm)						
Summaries:	Winter Precipitation (mm)					
1921-1950.	Summer Maximum Temperature (°C)					
1951-1980	Winter Minimum Temperature (°C)					
1981-2010)	matic Water Deficit (mm)					
1901-2010)	Actual Evapotranspiration (mm)					
	Annual Runoff (mm)					
Topography	Slope (%)	USGS LANDFIRE Topographic Product				
	Southwest Index	Derived from USGS LANDFIRE Topographic Products				
	Solar Insolation Index					
	Topographic Wetness Index					
	Heat Load index					
	Terrain Ruggedness	USGS – Welty and Jeffries 2018				
	Topographic Heterogeneity	NatureServe				
Soils	Soil Thickness	Gridded National Soil Survey Geographic Database				
	Soil pH	(gNATSGO), USDA NRCS				
	Available Water Capacity					
	Percent Clay					
	Percent Sand					
	Soil Porosity	California Basin Characterization Model (BCM) v8 Input				
	Productivity Index	USDA U.S. Forest Service				
	Drainage Index					