Projected Climate Scenarios and Potential Impacts on Vegetation and Fire Vulnerability

Prepared by Kai Henifin, Fire and Climate Resilience Coordinator, Pepperwood Prepared for Golden Gate Biosphere Network Climate Vulnerability Assessment December 2023

1) Provide a range of viable scientific projections suitable for this vulnerability assessment. 2) Support ongoing conservation planning by partners. 3) Scope potential collaborative climate resilience project opportunities.

Context

- recommend "ensemble approach" to climate projections.
- 2. Analyzing scenarios representing different degrees of change in projected
- to project precise timing of how impacts unfold.
- 4. Models are based on monthly average values; complementary analyses may be required to capture extreme events.
- 5. The full suite of data is available on Data Basin and ArcGIS Online.

I. Lot of uncertainty about impacts of climate change on watersheds and ecosystems,

temperature and rainfall, each scenario is treated as a distinct physical "simulation".

3. Scenarios simulate potential change in climate conditions in the future, not intended

Approach

- of ensemble.
- 2. scenario.
- 3. and recharge (270m).
- Query vegetation distribution and fire hazard models that build on Basin 4. Characterization Model, outputs or equivalents (30m).

Identify a subset of scenarios to use that capture end members and central tendency

Use most recent models (CMIP 6) but augment with (CMIP5) to include drought

Utilize USGS Basin Characterization Model inputs (PPT and TEMP) to ecologically relevant hydrology indictors: AET (productivity), PET, CWD (drought stress), runoff

Outline

State of the state

- I. Review of climate model selection including summaries of downscaled temperature and rainfall trends.
- Review of hydrology outputs and summaries. 2.
- Discussion on implications of climate for vegetation, Ackerly model.
- 3. Discussion on implications of climate for fire hazard. 4.
- Highlighting landscape-scale and collaborative project opportunities for 5. planning.

Overview and Methods

Methods | CLIMATE SCENARIOS AND FOUR-SQUARES

Late-*century values* were calculated for climate projections that span a range of temperature and precipitation conditions for California

Methods | BASIN CHARACTERIZATION MODEL (BCM)

Basin Characterization Model (BCM) Translating climate to watershed response

Downscaled Temperature Inputs Derived from Global Climate Models

Temperature | SUMMARY OF SCENARIOS COMPARED TO HISTORIC BASELINE

	Average (AVG) °C			Winter Minimum (DJF) °C			Summer Maximum (JJA) °C		
Recent Historic (1981-2010)	14.3				4.9	25.9			
Scenario	Warm/High Rainfall	Warm/ Moderate Rainfall	Hot/Low Rainfall	Warm/High Rainfall	Warm/ Moderate Rainfall	Hot/Low Rainfall	Warm/High Rainfall	Warm/ Moderate Rainfall	Hot/ Rair
Late-Century (2070-2099)	16.6	16.6	19.4	5.5	5.9	9.0	29.0	29.3	32
Change	2.2	2.2	5.1	0.6	1.0	4.1	3.1	3.4	7.

Data Source: Flint & Flint v8 (2021) & v6 (2014)

Temperature | WINTER MINIMUM (DEC, JAN, FEB), RECENT HISTORIC VS PROJECTED

Recent Historic (1981-2010)

Data Source: Flint & Flint v8 (2021) & v6 (2014)

Late-Century (Warm/Moderate Rainfall) Temperature Change (°C) $\left(\right)$

Change from Recent Historic (Warm/Moderate Rainfall)

Average Change +1.1 °C

30-YEAR MEAN

Temperature | SUMMER MAXIMUM (JUN, JUL, AUG), RECENT HISTORIC VS PROJECTED

Late-Century (Warm/Moderate Rainfall)

34

Change from Recent Historic (Warm/Moderate Rainfall)

Average Change +3.3 °C

-3

Temperature Change (°C) 30-YEAR MEAN

14

Hotter Summers

Temperatures are projected to be between +3.1 to 7 ^oC hotter

Milder Winter Weather Temperatures are projected to be between +0.6 to 4.1 °C hotter

Data Source: Flint & Flint v8 (2021) & v6 (2014)

Watershed Hydrology

Precipitation | QUANTITATIVE SUMMARY

Recent Historic (1981-2010)	
Scenarios	Warm/High Rainfall
Late-Century (2070-2099)	1423mm
Percent Change	+38%

Data Source: Flint & Flint v8 (2021) & v6 (2014)

Average Annual Precipitation (mm/year)

1027mm

Warm/ Moderate Rainfall	Hot/Low Rainfall
1084mm	818mm
+5%	-20%

Hydrology | TRENDS IN ANNUAL AND SEASONAL PRECIPITATION

15

Greatest % Change in Annual Precipitation (mm) TOP 20%, BY MODEL

Greatest % Change in Summer Precipitation (mm) TOP 20%, BY MODEL

ALL MODELS

Increased precipitation

WARM/HIGH RAINFALL WARM/MOD RAINFALL Decreased precipitation

HOT/LOW RAINFALL

Data Source: Flint & Flint v8 (2021) & v6 (2014)

Greatest % Change in Winter Precipitation (mm) TOP 20%, BY MODEL

Hydrology | quantitative summary

		Average Annu Runoff (mm/yea		Average Annual Recharge (mm/year)			
Recent Historic (1981-2010)	366mm			147mm			
Scenarios	Warm/High Rainfall Rainfall		Hot/Low Rainfall	Warm/High Rainfall Rainfall		Hot/Low Rainfall	
Late-Century (2070-2099)	717mm	419mm	235mm	181mm	145mm	170mm	
Percent Change	+96% +14%		-36%	+23%	0%	-16%	

Data Source: Flint & Flint v8 (2021) & v6 (2014)

Hydrology | RECENT HISTORIC (1981-2077) WATER SUPPLY

Data Source: Flint & Flint v8 (2021) & v6 (2014)

Hydrology | Change in Water Supply Warm/Moderate Rainfall (2070-2099)

Hydrology | CLIMATIC WATER DEFICIT

Climatic Water Deficit (CWD) A METRIC OF DROUGHT STRESS

Potential Climatic Water Deficit Evapotranspiration Evapotranspiration

Actual

This metric integrates the effects of temperature and rainfall

- CWD increases with most projected climate scenarios
- CWD correlates with vegetation and fire risk, as well as drought

Hydrology | climatic water deficit quantitative summary

	Climatic	A V
Recent Historical (1981-2010)		
Scenarios	Warm/High Rainfall	
Late-Century (2070-2099)	724mm	
Percent Change	+10%	

Data Source: Flint & Flint v8 (2021) & v6 (2014)

Average Annual Water Deficit (mm/year)

660mm

Warm/Moderate Rainfall

658mm

0%

Hot/Low Rainfall

882mm

+34%

Hydrology | RECENT HISTORIC CLIMATIC WATER DEFICIT VARIABILITY

231

CALCULATING CHANGE IN CWD VARIABILITY

Change (in Standard Deviation Units) = Projected 30yr mean – RH 30yr mean RH 30yr Standard Deviation

RH (Recent Historic 1981-2010) Projected (Late Century 2070-20999) Source: Thorne et al. 2015

Hydrology | CHANGE IN CLIMATIC WATER DEFICIT FROM HISTORICAL (1981-2010)

Summary | TEMPERATURE AND PRECIPITATION INPUTS, AND BCM OUTPUTS

Temperature and CWD increased for all scenarios Precipitation, recharge, and runoff projections differed by scenario

VARIABLE	TREND	Warm/High Rainfall	Warm/ Moderate Rainfall	Hot/Low Rainfall	PROJECTED TREND
Annual Average Temperature		Δ	Δ	$\Delta\Delta$	+50
Winter minimum (Dec, Jan, Feb)		$\Delta\Delta$	$\Delta\Delta$	$\Delta\Delta$	+20
Summer maximum (Jun, Jul, Aug)		Δ	Δ	$\Delta\Delta$	L → Increase
Annual Precipitation		$\Delta\Delta$	Δ	$\nabla \nabla$	5 -5 No change ↓↓↓ ↓ Decrease
Seasonal Precipitation (Jun, Jul, Aug)		$\Delta\Delta$	$\Delta\Delta$		-20
Seasonal Precipitation (Dec, Jan, Feb)		$\Delta\Delta$		$\nabla \nabla$	<u> </u>
Recharge		$\Delta\Delta$		∇	
Runoff		$\Delta\Delta$	Δ	$\nabla \nabla$	 Varies by model
Climatic water deficit		Δ		$\Delta\Delta$	
		<u>. </u>			Pepperwood

Conservation Landscape Network (CLN) Landscape Units | 12 GEOGRAPHIC EXTENTS

Landscape Units are geographic divisions based on physiographic features and inform the vegetation vulnerability model.

*Factors, excluding climatic-biotic, and edaphic conditions, affecting prevailing habitat conditions and biotic distributions (e.g. topography, drainage, erosion)

- 1 Northern Mayacamas Mountains
- 2 -Russian River Valley
- 3 Sonoma Coast Range
- 6 Southern Mayacamas Mountains
- 7 Santa Rosa Plain
- 10 Sonoma Valley
- 11 Sonoma Mountain
- 12 Coastal Grasslands
- 16 Marin Coast Range
- 17 Point Reyes
- 25 San Francisco
- 30 Santa Cruz Mountains North

Temperature | SEASONAL (WINTER & SUMMER) AVERAGE TEMPERATURE BY LANDSCAPE UNIT

Precipitation | ANNUAL AVERAGE PRECIPITATION BY LANDSCAPE UNIT

Data Source: Flint & Flint v8 (2021) & v6 (2014)

Climatic Water Deficit | AVERAGE NUMBER OF STANDARD DEVIATIONS FROM RECENT HISTORIC (1981-2010)

WILDFIRE PROBABILITY

VARIABLE	METRIC	
Wildfire Hazard	Burn Probability of a period (frequency)	
Potential for causing damage to vulnerable resources	Fire Intensity (severity) - Flame length - Fireline intensity	

Fire | burn probability + fire intensity (region et al. 2015 & Dillon et al. 2015, 2018)

Data Source: Region et al. (2021), Dillon et a. (2015, 2018)

$Fire \mid$ wildfire hazard probability and golden gate biosphere network lands

LOW

ACR	Audubon Canyon Ranch
BMR	Bodega Marine Reserve
CCSP	China Camp Sate Park
FPNHS	Fort Point National Historic Site
GGNRA	Golden Gate National Recreation Area
GGNPC	Golden Gate National Parks Conservancy
JRBP	Jasper Ridge Biological Preserve
MWNM	Muir Wood National Monument
PBCS	Point Blue Conservation Science
PRNS	Point Reyes National Seashore
PP	Pepperwood Preserve
PT	Presidio Trust
SPTSP	Samuel P. Taylor State Park
SFPUC	San Francisco Public Utilities Commission
TBSP	Tomales Bay State Park

HIGH

FIRE | WILDFIRE HAZARD BY ECOSYSTEM

	T 1	Acres Ranked for Wildfire Hazard	Urban & Non-burnable fuel	Percent Area by Wildfire Hazard Rank			
Ecosystems	Total Acres			Low	Moderate	High	Very High
Coastal Dunes	5,780	4,922	15.5%	85%	0.5%	-	_
Coastal Prairie	395,485	341,278	14%	75%	10%	0.8%	0.2%
Coastal Redwood Forest	162,675	154,309	4.4%	42%	49%	4%	0.6%
Coastal Scrub	111,650	105,502	6.6%	82%	11%	0.4%	-
Freshwater Marshes	20,375	12,162	39.9%	57%	3%	0.1%	_
Maritime Chaparral	13,377	11,860	11%	24%	53%	9%	3%
Mixed Evergreen Forests	61,122	57,922	5%	15%	65%	11%	4%
Open Oak Woodlands/Savanna	206,996	180,438	13%	31%	49%	5%	2%
Riparian Forests/Woodlands	130,116	119,981	15%	32%	53%	-	-

Data Source: Regional et al. (2021) and Marin County Fine-scale vegetation, Golden Gate Parks Conservancy and Tukman Geospatial LCC (2021)

Fire | projecting change in wildfire probability due to climate and land-use (park et. al 2021)

Data Source: Park et al. (2021)

uts	Metric				
l Dryness	Climatic Water Deficit (Average and Deviation)				
l Availability	Actual Evapotranspiration (Average and Deviation)				
l Availability	Vegetation Regeneration (Year Since Fire)				
	House density				
nan Influences	Roads				
	Electrical Infrastructure				
	Agriculture				

Vegetation Vulnerability Assessment Ackerly et al. Probabilistic Vegetation Model

The Probabilistic Vegetation Model (PVM)

Ackerly et al. (2015) modeled the distribution of 22 major vegetation types, most defined by a single dominant woody species, across the San Francisco Bay Area.

Results can be used to facilitate landscape scale analyses

- Project biotic responses to future climate change
- Evaluate responses of individual species along with the overall responses of communities and ecosystems •

Summer maximum temperature (°C)

Ackerly DD, Cromwell WK, Weiss SB, Flint LE, Flint AL. 2015.

A Geographic Mosaic of Climate Change Impacts on Terrestrial Vegetation: Which Areas Are Most at Risk? PLoS ONE 10(6)

Climatic Variables (1951-1980 historic norms)

Annual precipitation (mm)

Climatic water deficit (mm)

Pepperwood

Modeled frequency of 22 vegetation types

Grassland Semi-desert scrub Coastal scrub Chamise chaparral Mixed chaparral Mixed montane chaparral Blue oak-foothill pine woodland Blue oak forest / woodland Valley oak forest / woodland Oregon oak woodland Black oak forest / woodland Interior live oak forest / woodland Canyon live oak forest Coast live oak forest / woodland Montane hardwoods California bay forest Tanoak forest Knobcone pine forest Bishop pine forest Ponderosa pine forest Douglas fir forest Redwood forest

Ackerly et al. 2015

The model was projected for 54 future climate scenarios, spanning a representative range of temperature and precipitation

18 climate projections \times 3 time periods = 54 scenarios 2010 - 2039 2040 - 2069 2070 - 2099

This figure shows the relative frequency of 22 vegetation types, parameterized for the historical baseline period and then projected for 54 possible futures

General trend: Increase in relative distribution of chamise chaparral

Grassland Semi-desert scrub Coastal scrub **Chamise chaparral** Mixed chaparral Mixed montane chaparral Blue oak-foothill pine woodland Blue oak forest / woodland Valley oak forest / woodland Oregon oak woodland Black oak forest / woodland Interior live oak forest / woodland Canyon live oak forest Coast live oak forest / woodland Montane hardwoods California bay forest Tanoak forest Knobcone pine forest Bishop pine forest Ponderosa pine forest Douglas fir forest Redwood forest

Probabilistic Vegetation Vulnerability | FOUR-SQUARE REPRESENTATION OF CHANGE AND SCENARIO

Species-specific potential responses to climate change

Higher rainfall	Warm < 4°C more rain	Hot > 4°C more rain
Lower rainfall	Warm < 4°C less rain	Hot > 4°C less rain
	Marmor	Hottor

Probabilistic Vegetation Model | Example Summary by Landscape Unit

The direction and magnitude of change was projects for each vegetation type across the four types of climate scenarios

Redwoods

... for each of the 12 Landscape Units Projected habitat suitability was projected for each vegetation type was represented as a set of *four squares, for example*:

Vegetation | SUITABLE CLIMATE SPACE IS DECLINING

Miniature leaves during drought

Photo: Todd Dawson

2015-16 drought San Luis Obispo county

Normal leaves

	Coastal Grassland	Marin Coast	Point Reyes	San Francisco	Santa Cruz Mountains North
-		-	-	-	-
-	-		-		
-	-	-	-	-	•
			-	-	

Vegetation | SUITABLE CLIMATE SPACE IS EXPANDING

May expand under warmer climates. While sensitive to warmer summers, it may be favored by increasing winter temperatures.

ma ey	Sonoma Mountains	Santa Rosa Plains	Coastal Grassland	Marin Coast	Point Reyes	San Francisco	Santa Cruz Mountains North	

Vegetation | SUITABLE CLIMATE SPACE IS STAABLE AND EXPANDING

California Bay

Photo: National Wildlife Federation

Coyote bush

Photo: Wikimedia Commons, Franco Folini

1	Sonoma Mountains	Santa Rosa Plains	Coastal Grassland	Marin Coast	Point Reyes	San Francisco	Santa Cruz Mountains North
	-	-			-	-	
		-					
	-	-				-	

Vegetation | SUITABLE CLIMATE SPACE IS MIXED

sempervirens)

Sensitive to water deficit and high temperatures. Likely to persist best in cool north-facing slopes, riparian and moist valleys, and areas of persistent fog, where summer drought is reduced.

L	Sonoma Mountains	Santa Rosa Plains	Coastal Grassland	Marin Coast	Point Reyes	San Francisco	Santa Cruz Mountains North
					-	-	

TAKE AWAYS

rate of change

2.) Precipitation is highly variable across all the scenarios, trending toward extreme events

3.) New models project more rainfall, particularly in northwestern portion of

Sonoma County

4.) Water deficits are likely to increase across all scenarios, which in turn

increase fire hazard locally and may reduce suitable habitat for non-drought

tolerant species

1.) Temperature increases across all scenarios, does not indicate direction or

Data Basin (databasin.org)

DATA BASIN | GALLERIES | GOLDEN GATE BIOSPHERE CLIMATE ADAPTATION PROJECT

Golden Gate Biosphere Climate Adaptation Project

Created by Kai Henifin

About

The goal of this project is to integrate existing, best available science with an expert elicitation process to improve understanding of whether and how important natural resources in the Golden Gate Biosphere Network (GGBN) region may be vulnerable to changing climate conditions and what management actions can be implemented to reduce vulnerabilities and/or increase resilience of those resources.

Tags

golden gate biosphere, adaptation planning, climate, bcm, north bay, basin characterization model

Dec 5, 2022 (Last modified Nov 8, 2023)

bookmarked by 1 member

Questions

Kai Henifin khenifin@pepperwoodpreserve.org

APPENDIX

	Sonoma Coast Range	Russian River Valley	Northern Mayacamas Mountains	Southern Mayacamas Mountains	Sonoma Valley	Sonoma Mountains	Santa Rosa Plains	Coastal Grassland	Marin Coast	Point Reyes	San Francisco	Santa Mou No
Black oak (Quercus kelloggii)		-			-		-		-	-	-	
Blue oak (Quercus douglasii)					-		-	-		-		
California Bay (Umbellularia california)					-		-					
California Sagebrush (Artemisia california)	-		-	-	-	-	-	-	-	-		
Canyon live oak (Quercus chrysolepis)					-	-	-	-	-	-	-	

Data Source : Ackerly et al. 2015

nta Cruz ountains North

	Sonoma Coast Range	Russian River Valley	Northern Mayacamas Mountains	Southern Mayacamas Mountains	Sonoma Valley	Sonoma Mountains	Santa Rosa Plains	Coastal Grassland	Marin Coast	Point Reyes	San Francisco	Santa Mou No
Chamise (Adenostoma fasciculatum)		-				-	-			-	-	
Coast live oak (Quercus agrifolia)						-						
Coyote brush (Baccharis pillars)			-			-	_				-	
Douglas-fir (Pseudotsuga menziessi)		-									-	
Gray pine (Pinus sabiniana)					-	-		-	-	-	-	

Data Source : Ackerly et al. 2015

nta Cruz ountains North

	Sonoma Coast Range	Russian River Valley	Northern Mayacamas Mountains	Southern Mayacamas Mountains	Sonoma Valley	Sonoma Mountains	Santa Rosa Plains	Coastal Grassland	Marin Coast	Point Reyes	San Francisco	Santa Mou No
Interior live oak (Quercus wislizeni)			-		-	-		-		-	-	
Knobcone pine (Pinus attenuata)	-	-				-	-	-	-	-	-	
Madrone (Arbutus menziesii)					-	-	-	-	-	-	-	
Monterey cypress (Hesperocyparis macrocarpa)		-	-	-	-	-	-		-	-	-	
Oregon oak (Quercus garrana)										-	-	

Data Source : Ackerly et al. 2015

nta Cruz ountains North

	Sonoma Coast Range	Russian River Valley	Northern Mayacamas Mountains	Southern Mayacamas Mountains	Sonoma Valley	Sonoma Mountains	Santa Rosa Plains	Coastal Grassland	Marin Coast	Point Reyes	San Francisco	Santa Moun Nor
Redwood (Sequoia sempervirens)										-	-	
Valley oak (Quercus lobata)			-		-	-				-	-	

Data Source : Ackerly et al. 2015

