Yale Framework Matrix (http://yale.databasin.org). Six key climate change adaptation approaches for conservation planning at three levels of ecological analysis. The cells within the table list the kinds of scientific assessment needed to support adaptation planning and action. | Ecological Level | | | | |---|--|--|---| | Adaptation Approach | Species & Population | Ecosystem | Landscape | | A. Strengthen current conserva | ation efforts | | | | 1) Protect current patterns of biodiversity | Assess population sizes,
viability, conservation status,
and phenological trends Map species occurrences | Map terrestrial and aquatic
ecosystems and their
associated services | Map genetic pattern across
the landscape Map beta and gamma
diversity Map biodiversity hotspots | | 2) Protect large, intact, natural landscapes | Forecast climate change
effect on species viability Forecast climate change
effects on pests, diseases, or
invasive species | Map potential future patterns of fire, hydrology, carbon sequestration, and ecological integrity Map locations where ecosystem services operate and provide human value | Analyze projected trends in climatic variables (precipitation, temperature, etc.) Map factors related to ecological integrity (e.g., fragmentation, distance from disturbance) | | 3) Protect the geophysical setting | • N/A | Map areas of high ecological integrity Map land facets in relation to current climate patterns Map areas of high topographic complexity | | | B. Anticipating and respondir | ng to future conditions | | | | 4) Identify and appropriately manage areas that will provide future climate space for species expected to be displaced by climate change. | Forecast species and rare
community vulnerability to
climate change based on
their capacity to adapt
biologically Map future range
distributions of species | Forecast ecosystem vulnerability to climate change Map locations that would support shifts in vegetation types and biomes | Forecast land use change Project sea level rise Project climate change Map future biodiversity hotspots | | 5) Identify and protect climate refugia | Identify areas that would
harbor current species into
the future Identify where species
populations remain stable
or increase with climate
change | Map habitats with high
natural resilience to climate
change (e.g. spring-fed
streams) Map areas projected to
experience little change in
vegetation | Map drought refugia Map areas projected to
maintain stable climate | | 6) Maintain and restore ecological connectivity | Identify areas critical to
species movements in a
changing climate Map movement corridors
for species life-history and
migration | Map connections between
current and projected
future locations Anticipate species invasions
along planned corridors | Map connections between
land facets, ecological land
units, refugia or areas of high
ecological integrity |