Changing forest conditions behind the redwood curtain?

Phil van Mantgem

US Geological Survey, Western Ecological Research Center,
Redwood Field Station, 1655 Heindon Road, Arcata, CA 95521.
U.S. Department of the Interior
U.S. Geological Survey

STATE

California gov. declares emergency over dead trees

\qquad
A dead-tree census by the U.S. Forest Service found that 22 million trees have died during California's four-year drought, and tens of millions more are expected to follow.

Annual Average Precipitation and Temperature for California

Courtesy Jim Thorne UCD

The two components of drought are water supply and demand.
A leaky bucket analogy:

The two components of drought are water supply and demand.
A leaky bucket analogy:

Average conditions

2्0USGS

The two components of drought are water supply and demand.
A leaky bucket analogy:

Average conditions

"Normal" drought

Reduced
supply
(precip.)
Average
demand
(evap.)

2्0USGS

The two components of drought are water supply and demand.
A leaky bucket analogy:

Average conditions

"Normal" drought

Hotter drought

ZUSGS

If all we had was a rain gauge, we'd think the current drought was comparable to the 1924 drought.
Annual PDSIsc through 2014 only

RUSGS

But temperature-induced increases in evaporative demand have pushed the drought to historical extremes ...

Hydrologic changes in the West

Snowpack has been decreasing

Spring streamilow has been arriving earlier

What does this mean for our forests?

- Tree mortality and forest die-back
- Changing fire regimes

What does this mean for redwood forests?

- Climate change along the North Coast
- Forest responses?

What, if anything, can be done?

- Adaptation for resistance and resilience

Why tree mortality?

Tree populations are highly sensitive to changes in mortality rate

RUSGS

A growing body of evidence suggests that environment (particularly climate) affects forest demographic rates

Large-scale die-off

ZUSGS

Southern Sierra Nevada die-back event of 2016

USFS Region 5 Aerial Detection Survey
Areas with mortality: 4.3 million acres
Estimated number of trees killed: 62 million (102 million since 2010)

Z DUSGS

http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd509278.pdf

Approximately 10.6 million ha of forest containing up to 888 million large trees experienced measurable loss in canopy water content...

Die-back events occurring during 'hotter droughts'

Increasing incidence of forest die-back as an emerging global phenomenon

Locations of substantial drought- and heat-induced tree mortality around the globe since 1970 (Allen et al. 2015 Ecosphere)

A growing body of evidence suggests that environment (particularly climate) affects forest demographic rates

Large-scale die-off
Background mortality
(1) subtle, slow, neglected
(2) ... but important!

2.2UGS

Tree mortality rates are increasing in the western US

Symbol size $=$ magnitude of change Red = increasing mortality
Blue $=$ decreasing mortality

What does this mean for our forests?

- Tree mortalify and forest die-back
- Changing fire regimes

What does this mean for redwood forestis?

- Climate change along the North Coast
-Forest responses?
What, if anything, can be done?
- Adaptation for resistance and resilience

Changing climate $=$ changing fire regime

Changing climate $=$ changing fire regime

High severity fire is increasing in low elevation forests in the Sierra Nevada of California

Mallek et al. 2013 Ecosphere Miller et al. 2009, Ecosystems Miller \& Safford 2012, Fire Ecol. (but see Miller et al. 2012, Ecol. Appl.)

Interactions of stressors

--------- Have to sneeze
—— Have to pee

Climatic stress increases forest fire severity across the western United States

- Data from NPS and USFS
- 18 sites
- >250 plots
->7000 trees
- dominated by P. ponderosa and A. concolor
(also Pseudotsuga menziesii,
Calocedrus decurrens and P. lambertiana)

van Mantgem et al. 2013, Ecol. Lett.

What does this mean for our forests?

- Tree mortality and forest die-back
- Changing fire regimes

What does this mean for redwood forests?

- Climate change along the North Coast
- Forest responses?

What, if anything, can be done?

- Adaptation for resistance and resilience

ZUSGS

What does the future hold? Temperature trends at RNSP

Historical Trend in Annual Average Temperature, 1950-2010

Redwood National Park

Wang et al., in prep

2 ZUSGS

What does the future hold?
 Precipitation trends at RNSP

[^0]
Changing coastal fog?

33\% reduction in (high altitude) fog frequency since the early 20th century

Johnstone \& Dawson 2010, Proc. Nat. Acad. Sci.

2USGS

Redwood growth increasing?

- redwood radial growth increased with decreasing summer cloudiness (i.e., airport fog)
- significant ($P<0.01$) at three locations in northern California

The Klamath Inventory and Monitoring Network

The KLMN forest plots

Climatic velocity: modeled changes in actual evapotranspiration (AET) and climatic water deficit (CWD)

ENERGY RELEASE COMPONENT (ERC) CHART
FUEL MODEL G SHORT NEEDLE (HEAVY DEAD)

http://gacc.nifc.gov/oncc/predictive/fuels_fire-danger/psac/erc/

MID-CENTURY

MID-CENTURY

2007-2041 HADLEY A2

MEAN MAX DAILY ERC-G

RAWS MEAN MAX ERC = 59

$\square<20 \quad$ 2042-2076 HADLEY A2

MEAN MAX DAILY ERC-G

RAWS MEAN MAX ERC = 67

NORTHERN COASTAL CALIFORNIA: ON THE BRINK OF A PHASE CHANGE IN FIRE BEHAVIOR?

What does this mean for our forestis?

- Tree mortality and forest die-back
- Changing fire regimes

What does this mean for redwood forestis?

- Clinatie change along the North Coast
-Forest responses?
What, if anything, can be done?
- Adaptation for resistance and resilience

ZUSGS

Past forest conditions no longer automatically provide us with management targets!

AND

The future is highly uncertain

What are "natural" conditions?

Current NPS natural resources policy:
-- When possible, restore and maintain naturallyfunctioning ecosystems.
-- When this is not possible, "maintain the closest approximation of the natural condition."

What, if anything, can be done?

Adaptation strategies
Resistance: ability to remain essentially unchanged following disturbance

Resilience: ability to recover quickly from disturbance

Adaptation:

Can forest management increase resistance/resilience to drought?

Forest ecosystem services

Can prescribed fire increase forest resistance to drought?

- Long-term forest plot data
- Surveys in 2014
- Ponderosa pine mixed conifer forests (mostly A. concolor)
- 28 plots (28 burned, 13 unburned)
- ≥ 6 years post-fire
->5000 trees

van Mantgem et al. in review.

Can prescribed fire increase forest resistance to drought?

- Long-term forest plot data
- Surveys in 2014
- Ponderosa pine mixed conifer forests (mostly A. concolor)
- 28 plots (28 burned, 13 unburned)
- ≥ 6 years post-fire
->5000 trees

Can prescribed fire increase forest resistance to drought?

Findings

Probability of death lower in burned stands in 2013, 2014 (after accounting for tree size and taxonomic group).

What is the impact of continued drought in 2015?

Can we explicitly identify the mechanisms of tree mortality??
i.e., roles of competition, pathogens, insects?

Other species, other regions???
www.werc.usgs.gov/DroughtForestFire

Adaptation:

Can forest management increase resistance/resilience to drought?

Old-growth

Second-growth

Second-growth: thin

Thanks!

Countless field crews, and data managers... Laura Lalemand \& Jon Hollis

National Park Service, USGS, Joint Fire Sciences Program

ZUSGS

[^0]: Siper century

