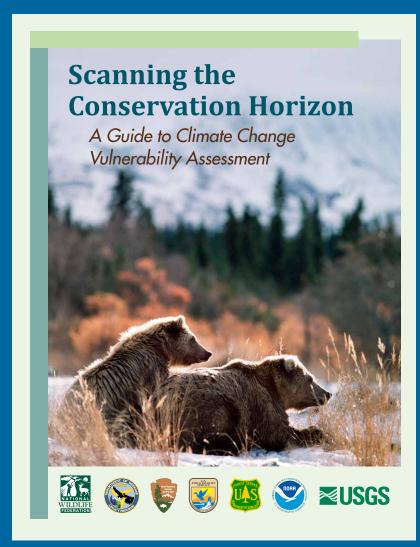
Introduction to Vulnerability Assessments


Jessi Kershner, Senior Scientist EcoAdapt

Talk Goals

- Introduce climate
 adaptation planning and
 the role of vulnerability
 assessment
- Unpack the concept of vulnerability
- Summarize key assessment steps

Adaptation Planning Framework

Overarching Conservation Goal(s)

- Species
- Habitats
- Ecosystems

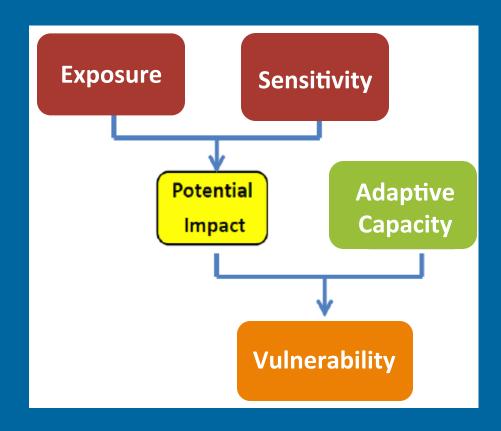
1. Identify
Conservation
Target(s)

2. Assess
Vulnerability
to Climate
Change

- Sensitivity
 - Exposure
 - Adaptive Capacity

Monitor, Review, Revise

- Changes in Policy
- Changes in Practice
- Institutional Changes
- 4. Implement Management Options
- 3. Identify
 Management
 Options
- Reduce Sensitivity
- Reduce Exposure
- Increase Adaptive Capacity


Climate change vulnerability refers to the degree to which a species, habitat, or ecosystem service is susceptible to, and unable to cope with adverse impacts of climate change

IPCC 2007

Vulnerability is the degree to which a resource is susceptible to, and unable to cope with adverse impacts of climate change.

IPCC 2007

Vulnerability is the degree to which a resource is susceptible to, and unable to cope with adverse impacts of climate change. **Exposure**

Degree of change a resource is likely to experience

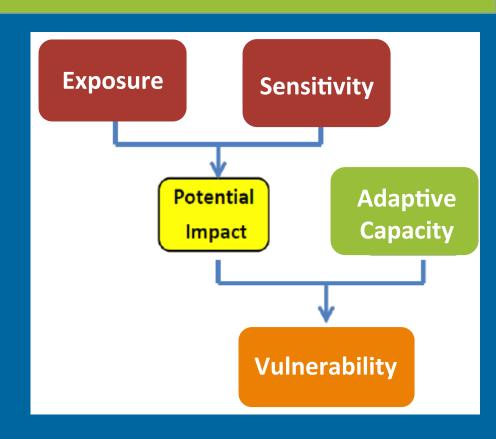
IPCC 2007

Vulnerability is the degree to which a resource is susceptible to, and unable to cope with adverse impacts of climate change. Sensitivity

Whether and how a resource reacts to climate change

IPCC 2007

Vulnerability is the degree to which a resource is susceptible to, and unable to cope with adverse impacts of climate change.


Adaptive Capacity

Ability of a resource to accommodate or cope with climate impacts

IPCC 2007

Vulnerability is the degree to which a resource is susceptible to, and unable to cope with adverse impacts of climate change.

Purpose of a vulnerability assessment:

Identify **what** resources are most vulnerable and **why**

$$V = (E*S) - AC$$

Why Assess Vulnerability?

Vulnerability assessments can help:

- Prioritize habitats or species for management actions
- Develop management strategies to address climate change
- Efficiently allocate resources

What vulnerability assessments cannot do:

Make a conservation decision for you

Vulnerability Assessment Steps

Step 1
Determine
objectives & scope

Step 4

Apply results of vulnerability assessment in adaptation planning

Steps 1 and 2

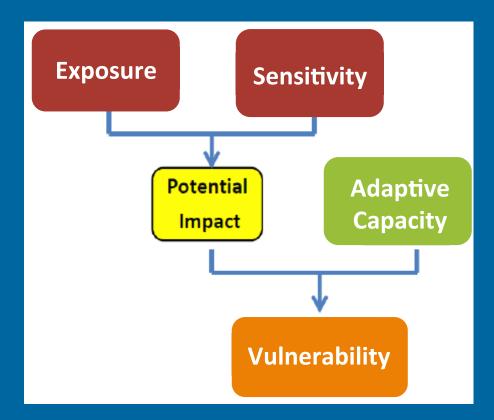
1. Determine objectives and scope

- Audience/user needs
- Goals and objectives
- Assessment targets (species, habitats, ecosystem services)
- Scale (temporal and spatial)
- Appropriate approach (no "one size fits all")

2. Gather relevant data and expertise

- Review existing literature
- Reach out to experts
- Obtain/develop climate and ecological response projections

Can find information through:


- Data Basin (piccc.databasin.org)
- Pacific RISA (pacificrisa.org)
- Climate Adaptation Knowledge Exchange (cakex.org)

Step 3

3. Assess components of vulnerability

- Assess sensitivity, exposure, and adaptive capacity
- Estimate overall vulnerability
- Document confidence levels and uncertainties

Assessing Sensitivity

Measure of whether and how a resource is likely to be affected by a given change in climate

Sensitivity to sunburn:

- Amount of melanin in skin key physiological factor
 - Melanin absorbs UV rays, which cause sunburn
 - Skin with lower melanin levels is more sensitive to sunburn

Assessing Sensitivity

Measure of whether and how a resource is likely to be affected by a given change in climate

Sensitivity evaluations consider:

- Climate and climate-driven factors
- Disturbance regimes
- Non-climate stressors
- Species-specific considerations:
 - Dependencies
 - Life history

Assessing Exposure

Measure of how much of a change in climate or other environmental factor(s) a resource is likely to experience

Exposure to sunburn:

- The amount of UV rays determines exposure
 - Strength of rays depends on latitude, season & weather
 - With enough exposure, most anybody can burn

Assessing Exposure

Climate Variable	Projected Future Trends	
Air temperature	↑ 1-3°F by mid-century	
Extreme heat events	♠ frequency and intensity	
Precipitation	Variable	
Drought	↑ risk, particularly in low- and mid-elevation leeward areas	
Sea level rise	overall, with variations in magnitude	
Coastal inundation	overall, with variations in magnitude	
Wildfire	↑ if drought events increase	

Measure of how much of a change in climate or other environmental factor(s) a resource is likely to experience

Exposure evaluations consider:

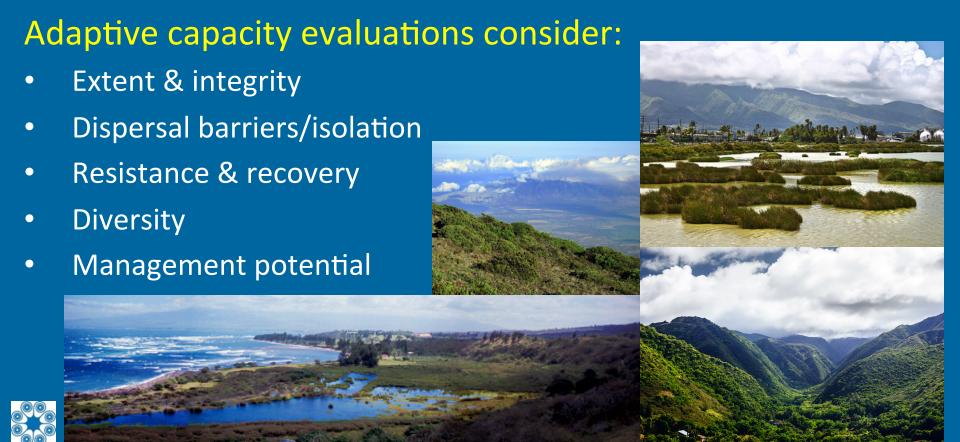
- Climate and climatedriven changes
- Disturbance regimes

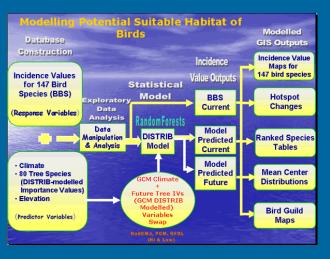
* Use climate models, ecological response models to help assess exposure

Assessing Adaptive Capacity

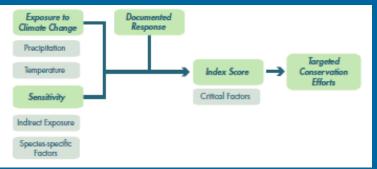
Ability of a resource to accommodate or cope with climate change impacts with minimal disruption

Adaptive capacity to sunburn:


- Can be intrinsic (reduce sensitivity) or extrinsic (reduce exposure)
 - Extrinsic adaptations include sunblock, protective clothes, shelter
 - Intrinsic adaptations include UV-induced increase in melanin production (i.e., tanning)



Assessing Adaptive Capacity

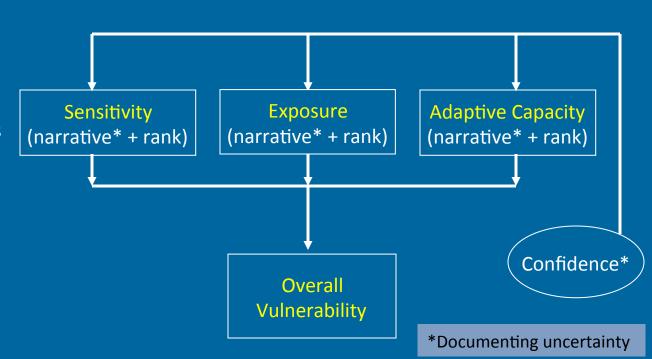

Ability of a resource to accommodate or cope with climate change impacts with minimal disruption

Putting the Pieces Together: How to Assess Vulnerability Components

- Detailed modeling efforts
 - In-house or commissioned
- Vulnerability indices
 - e.g., NatureServe Index
- Expert elicitation
 - Supplement and/or supplant modeling

Vulnerability Assessment Process

Each vulnerability assessment includes:


- Sensitivity
 - Narrative describing key climate & non-climate sensitivities
 - Overall rank (e.g., Moderate)
 - Confidence evaluation (e.g., Low)

Exposure

- List of key climate exposure factors (e.g., increased temperature, drought)
- Overall rank
- Confidence evaluation

Adaptive Capacity

- Narrative describing +/adaptive capacity factors
- Overall rank
- Confidence evaluation
- Overall Vulnerability + Confidence
 - Overall vulnerability rank
 Overall confidence rank
- Literature Cited

Example: Alluvial Scrub

Vulnerability: Moderate-High

High Confidence

Exposure

HIGH (5)

High Confidence

- ↑ Air temperatures
- \triangle Precipitation
- ↑ Wildfire
- ↑ Drought

MODERATE-HIGH (4)

High Confidence

Climate drivers:

- Water availability & timing
- Temperature

Disturbance regimes:

- Flooding
- Wildfire

Non-climate stressors:

- Invasive species
- Dams & water diversions

Adaptive Capacity

High Confidence

- Fairly degraded
- Low continuity
- Site restrictions
- Low-moderate diversity
- + Moderate resistance and recovery
- + Moderate-high societal value

Step 4

4. Apply assessment results in adaptation

planning

Reduce Sensitivity

Example: Reducing or eliminating invasive species that outcompete native species

Reduce Exposure

Example: Protecting resources and infrastructure from flood damage

Enhance Adaptive Capacity

 Example: Adjusting recreation timing or route of access

Addressing Uncertainty

- Natural resource management has always faced uncertainty
 - Anxiety about uncertainty often leads to "analysis paralysis"
 - Don't deny it, embrace it
 - How is other uncertainty dealt with?

- Three types of uncertainty

>99 percent probability of occurrence

nee types of affect taility		
	Very likely	>90 percent probability
Climate projections	Likely	>66 percent probability
	About as likely as not	33 to 66 percent probability
Ecological responses	Unlikely	<33 percent probability
	Very unlikely	<10 percent probability
Management effectiveness	Exceptionally unlikely	<1 percent probability

Terminology

Virtually certain

Distinguish between uncertainty in trend vs. rate & magnitude

Questions?

Jessi Kershner, Senior Scientist EcoAdapt

