Scenario Planning

Recap of Day 1 & Next Steps on VA

- Expert input and analysis of vulnerabilities for each resource, including confidence levels and uncertainties
- Send out transcribed worksheets for your review
- Evaluate resource vulnerabilities through a thorough review of the scientific literature
 - Rank components of vulnerability and write short summaries describing key information from the literature
- Peer review of draft products by experts

Example Products

Southern California River and Stream Habitats Climate Change Vulnerability Assessment Summary

An Important Note About this Document: This document represents an initial evaluation of vulnerability for river and stream habitats based on expert input and existing information. Specifically, the information presented below comprises habitat expert vulnerability assessment survey results and comments, peer-review comments and revisions, and relevant references from the literature. The aim of this document is to expand understanding of habitat vulnerability to changing climate conditions, and to provide a foundation for developing appropriate adaptation responses.

Habitat Description

Rivers and streams are powerful drivers of landscape patterns and ecological communities, and provide California's most valuable forest resource: water. Rivers and streams in southern California are primarily fed by precipitation, surface runoff, and groundwater discharge; historically, peak flows and flooding occur in winter and spring, and low- or no-flow conditions often occur in the summer and fall.^{1,2} This assessment includes both

perennial and ephemeral systems, as well as associated riparian vegetation.

Habitat Vulnerability

Moderate Vulnerability

The relative vulnerability of rivers and streams in southern California was evaluated to be moderate by habitat experts due to moderate-high sensitivity to climate and non-climate stressors, moderate exposure to future climate changes, and moderate adaptive capacity.

Summary documents that identify:

- Overall vulnerability
- Sensitivity
 - Climate
 - Disturbance
 - Non-climate
- Exposure
- Adaptive capacity
- All associated with confidence rankings and documented uncertainty

Overarching Conservation Goal(s)

Certain: death and taxes

Uncertain: everything else

Uncertainty under Climate Change

Responses to Uncertainty

Denial

Oversimplify

Express false confidence

Paralysis

Plan for everything

Wait and see

Addressing Uncertainty

- Natural resource management has always faced uncertainty
 - Anxiety about uncertainty often leads to "analysis paralysis"
 - Don't deny it, embrace it
- Document where/why there is uncertainty
- Three types of uncertainty
 - Climate projections
 - Ecological responses
 - Management effectiveness

<33 percent probability

<10 percent probability

<1 percent probability

Distinguish between uncertainty in trend vs. rate & magnitude

Terminology

Virtually certain

Very likely

Likely

Unlikely

Very unlikely

Exceptionally unlikely

Controllability

What is scenario planning?

A process in which we envision multiple plausible futures, and consider effects on our priorities and decisions

Scenarios → plausible futures that we develop given what we know from science and expert knowledge

What is scenario planning?

Scenario planning is a method for.....

- exploring what the future could look like
- comparing how resources could be affected
- comparing what management actions could be taken

Expert knowledgedriven rather than analysis-driven

Why scenario planning?

UNCERTAINTY

- Rate, magnitude, direction of change
- Ecosystem or species responses

COMPLEXITY

 Interacting stressors: land use change, institutional capacity, social systems, ecological relationships, etc.

How is scenario planning done?

- 1. Identify and prioritize critical climate drivers
- 2. Select and define future scenarios
- 3. Evaluate potential impacts of future scenarios on focal resources
- 4. Identify potential adaptation options under each scenario

Process and Objectives

1. Compare *impact* and *uncertainty* of different climate drivers on focal resources

3. Create *four* scenarios and compare resource impacts across different futures

2. Select *two* key climate drivers

Scenario Planning at Assateague Island National Seashore

- Barrier island provides critical habitat for threatened species & buffer for mainland
- Three different agencies manage portions of Assateague Island: NPS, USFWS, State of Maryland
- High vulnerability to sea level rise and increased storms
- Many park neighbors were skeptical of future climate impacts and resistant to management changes

Assateague Scenario Planning

Key Resources:

Beaches/dunes
Salt marsh
Maritime Forest and shrub
Freshwater ponds
Piping plover
Wild pony
Red fox
Archeological Resources

Identify and prioritize critical climate drivers

Temperature

Sea level rise

Precipitation

Extreme Storms

Drought

Evaluate impacts under future scenarios

SCENARIO #1

Low: SLR

High: Storms

Increasing temps
Increased storms & surge
High wave-driven overwash
Increased sediment runoff
Increased nutrient runoff and
blooms
Saltwater intrusion

Increasing temps
Increased storms & surge
High wave-driven overwash
Increased sediment runoff
Loss of land

Saltwater intrusion

SCENARIO #2

High: SLR

High: Storms

SCENARIO #4

Low: SLR

Low: Storms

Increasing temps
Less precipitation
More frequent and
prolonged droughts
Saltwater intrusion

Loss of land
Less precipitation
Saltwater intrusion

SCFNARIO #3

High: SLR

Evaluate impacts on resources under future scenarios

SCENARIO #1

Low: SLR

High: Storms

Beach & dune erosion

- Damage to maritime forest
- Degraded salt marsh habitat
- New space for shorebirds
- Landward migration of barrier island

SCENARIO #2

High: SLR

High: Storms

- Inlet formation/fragmentation
 Degradation/loss of salt marshes
- Loss of maritime forest
- Saltwater intrusion: shifts in plant types, loss of fw habitat
- Landward migration of barrier island

SCENARIO #4

Low: SLR

Low: Storms

- Some beach & dune erosion
- Lowering of water table/less freshwater available
- Degraded salt marsh habitat
- Landward migration of barrier island

- Degradation/loss of salt marshes
- Saltwater intrusion: shifts in plant types, loss of fw habitat
- Landward migration of barrier island

SCENARIO #3

High: SLR

Evaluate impacts on resources under future scenarios

SCENARIO #1

Low: SLR

High: Storms

High: Storms

SCENARIO #4

Low: SLR

Low: Storms

SCENARIO #3

High: SLR

Identify potential adaptation options

SCENARIO #1

Low: SLR

High: Storms

Sand Bar

Plant salt-tolerant species
Flexible infrastructure
Plant/Restore natural buffers
Managed retreat

SCENARIO #2

High: SLR

High: Storms

SCENARIO #4

Low: SLR

Low: Storms

Parched Ponies

Moving Target

Plant/Restore natural buffers

Flexible infrastructure

Plant/Restore natural buffers

Drowning in Place

Plant salt-tolerant species
Flexible infrastructure
Plant/Restore natural buffers
Managed retreat

SCFNARIO #3

High: SLR

Benefits of Scenario Planning

- Encourages thinking beyond historical trends
- Embraces uncertainty rather than ignoring it
- Identifies impacts to resources across different future climates
- Highlights adaptation strategies that apply across different future climates

Overview of Group Exercise

Desired Outcome: To define a suite of future climate scenarios and evaluate the impacts of different scenarios on focal resources

- Break out into your habitat groups
- Two parts:
 - Selecting climate drivers
 - Defining scenarios and evaluating impacts on focal resources

Overview of Group Exercise

Desired Outcome: To define a suite of future climate scenarios and evaluate the impacts of different scenarios on focal resources

Select climate drivers by:

- A. Ranking each driver by its impact and uncertainty
- B. Circling the **TOP 2**drivers that represent priorities for your focal resources*

^{*}Often these are drivers with greater uncertainty and impact

Overview of Group Exercise

Desired Outcome: To define a suite of future climate scenarios and evaluate the impacts of different scenarios on focal resources

Define scenarios and evaluate impacts by:

- A. Identifying the opposite extremes of each scenario
- B. Identifying the major impacts that would occur on your focal resources

Low: <u>Precipitation</u> **High**: <u>Fire</u>

Closing of popular recreation areas

Low: Precipitation **Low**: Fire

 Lower flows reduce connectivity for fish

SCENARIO #4
Low:
Low:

High: Precipitation

High: Fire

 Increased sedimentation in rivers

Low: Fire

Heavy rains fill reservoirs but wipe out roads

SCENARIO #3

High: _____

Case Study: Scenario planning at TomKat Ranch

Case Study: Scenario planning at TomKat Ranch

Climate-informed planning at TomKat Ranch

Altered Precipitation Patterns, Drought

Actions

- Undertaking water budget assessment
- Increasing cover of native perennial grasses
- Reducing need for supplemental animal feed
- Increasing locally grown food

Continuous Grazing

Pasture with no perennial grass found

Planned Grazing

Pasture with at least one perennial grass found

Next Steps

Overarching Conservation Goal(s)

- Species
- Habitats
- Ecosystems

1. Identify
Conservation
Target(s)

- 2. Assess Vulnerability to Climate Change
- Sensitivity
 - Exposure
 - Adaptive Capacity

Monitor, Review, Revise

- Changes in Policy
- Changes in Practice
- Institutional Changes

4. Implement Management Options

- 3. Identify
 Management
 Options
- Reduce Sensitivity
- Reduce Exposure
- Increase Adaptive Capacity

Jan/Feb 2017:
Adaptation Workshop