Northern California Climate Vulnerability & Adaptation Workshop

Upper Lake, CA October 3-4, 2017

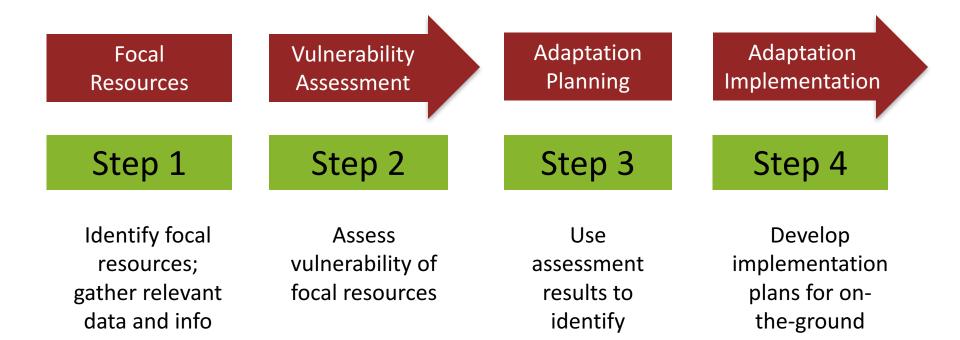
Northern California Climate Adaptation Project

Project Goals

- Improve understanding of why important Northern California resources may be vulnerable to changing climate conditions, and
- Identify what adaptation actions can be implemented to reduce vulnerabilities and/or increase overall resilience.


Project Overview

USFS


- Forest Plan Revisions
- Northwest Forest Plan Revision

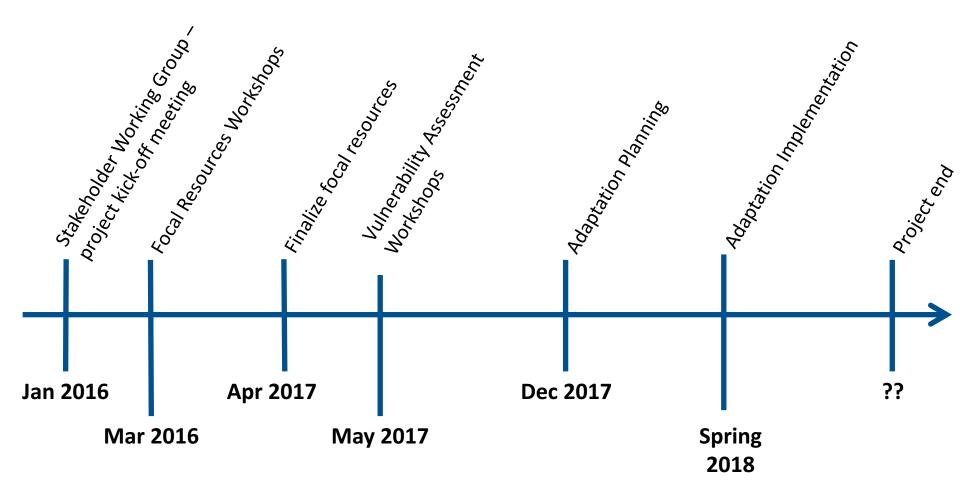
BLM

- Resource Management Plan Revisions
- **Project planning & NEPA**
- Facilitate partnerships & collaboration
- Other regional conservation efforts

Project Methodology

Phase 1: Vulnerability Assessment

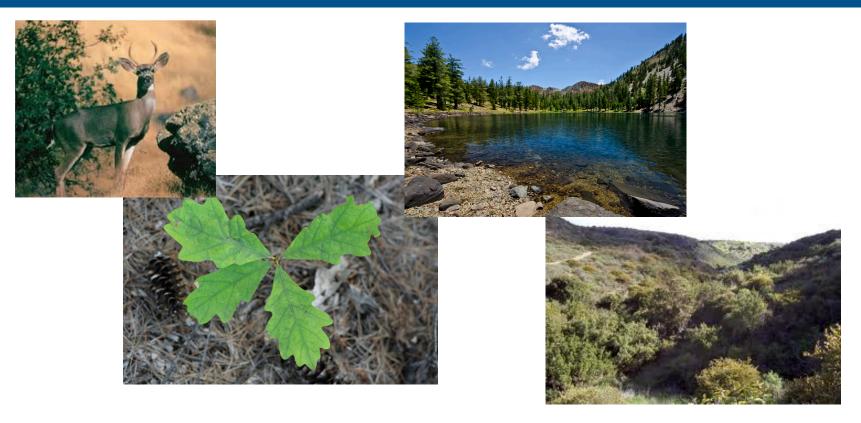
Phase 2: Adaptation Planning


adaptation

options

action

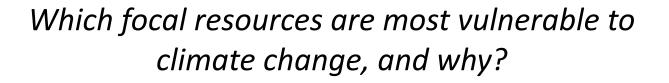
Project Timeline

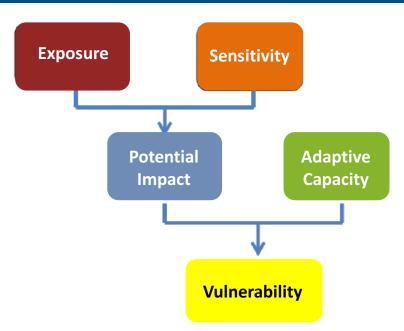

* All workshops will be held in both Eureka and Redding

Step 1: Identify Priorities

GOAL: Collaboratively identify regionally important resources

- Management, cultural, or socio-economic concern
- Habitats, Species/Species groups, Ecosystem services




		Habitats	Species/Species Groups			
Step 1: Product	Coastal	 Coastal Dune Forest (dune grassland, non-tidal wetlands, forest mosaic) Coastal/Bluff Scrub (coastal bluff scrub, prairie) 	 Anadromous Fish (salmonids, lamprey, sturgeon) 			
	Woodland	 Oak Woodlands Mixed Conifer Woodlands/Mixed Evergreen Forest 	 Native Ungulates (Roosevelt elk, deer) Tanoak Black oak 			
	Shrub/Grassl and	 Chaparral Mixed Grasslands (non-alpine) Alpine Grassland/Shrubland 	 Native Pollinators Migratory Birds 			
	Forest	 Coastal Redwood Mixed Conifer/Ponderosa (dry and moist) Coastal Conifer Hardwood (incl. pygmy forest) Coastal Pine Forest True Fir Forest Subalpine 	 Salamanders (Pacific Giant, endemic) Late Successional-Dependent Species (marten, fisher, northern spotted owl) Marbled Murrelet Rare Trees (spruce, cedar, alpine, cypress, enriched conifers) Sugar pine 			
	Freshwater	 Rivers, Streams, Floodplain Lakes, Ponds Marshes, Vernal Pools Seeps, Springs, Groundwater Wet Meadows, Freshwater Wetlands, Fens Riparian 	 Frogs (Northern Red-Legged, Foothill Yellow-Legged, Tailed) Port Orford Cedar Western Pond Turtle Riparian Nesting Birds (warblers, grosbeak) Native mussels 			
	Endemic	Rock Outcrops, Cliffs, Talus, Caves	• Bats			

Step 2. Assess Vulnerabilities

GOAL: Assess vulnerabilities of focal resources to climate and non-climate stressors by considering sensitivity, exposure, and adaptive capacity

- Scientists, managers, and other stakeholders evaluate resource vulnerabilities
- Add information from scientific literature
- Stakeholders/Experts review draft vulnerability assessment results

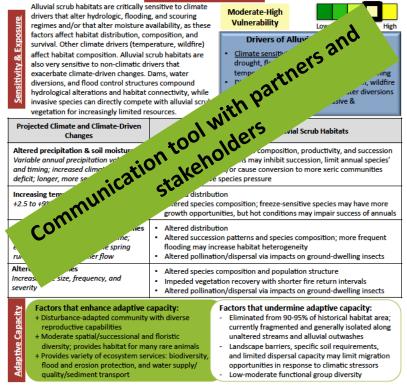
Step 2. Products

- 1. Ranked List
 - Most to least vulnerable

2. Vulnerability Syntheses

- State-of-the-science assessment
- Examines key vulnerabilities and provides in-depth discussions of potential impacts

3. Vulnerability Brief


- Vulnerability snapshot
- Lists key vulnerabilities, and provides brief description of primary impacts

	HABITAT	VULNERABILITY	CONFIDENCE		
	Pinyon-Juniper	Moderate-High	High		
	Alluvial Scrub	Moderate-High	High		
	Riparian	Moderate	Moderate		
	Desert	Moderate	High		
	River & Streams	Moderate	Moderate		

Habitat Description

Alluvial scrub habitats commonly inhabit outwash fans, river wash deposits, and riverine deposits at canyon mouths toward the base of mountain ranges, including the San Gabriel, San Bernardino, San Jacinto, and Santa Ana ranges. Alluvial scrub habitats can also be found on wash deposits of regional rivers, including the Santa Ana River and its tributaries. Alluvial scrub consists mainly of flood-adapted drought-deciduous subshrubs and evergreen woody shrubs.

Habitat Vulnerability

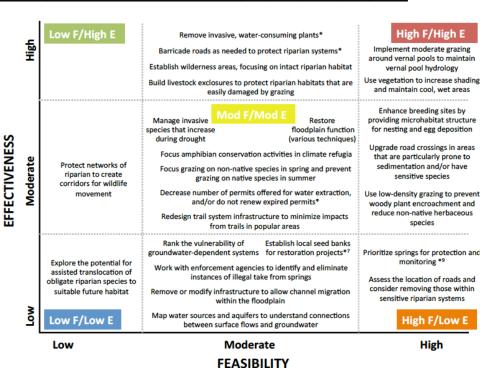
Step 3. Adaptation Planning

Goal: Develop adaptation strategies and actions to reduce vulnerabilities or increase resilience of focal resources

• Generate a suite of adaptation strategies and actions

Adaptation Strategy	Specific Adaptation Actions			
Restore fluvial processes to streams that support alluvial scrub vegetation	 Remove dikes, mining operations, and recharge basins that obstruct the migration ability of streams and sediment deposition areas Require undeveloped buffers along streams Raise roads out of washes 			
Maintain and/or restore the natural and historical characteristics of a watershed	• Designate critical habitat where the most sensitive species are found, and in areas where the home ranges of several species overlap			
Promote species that are tolerant of climatic changes	 Build a reserve of seeds and plants that are tolerant of disturbed conditions Restore habitat with native species that are tolerant of disturbed conditions and climatic extremes 			

- Where, when, and how those actions can be applied
- Implementation feasibility and effectiveness
- Stressors action helps to reduce or minimize


Step 3. Products

- **1. Adaptation Summaries**
 - Tables of adaptation options
 - Adaptation actions linked to stressors
 - Feasibility & Effectiveness figure

Management Activity	Adaptation Actions	Climate Stressors		Disturbance Regimes		Non- Climate Stressors
	Designate critical habitat where the most sensitive species are found, and in areas where the home ranges of several species overlap		~	~	~	~
Activities	Conduct a common garden experiment of plants from across the species' range in order to understand the level of adaptive variation within the population	~	~			
storation	Build a reserve of seeds and plants that are tolerant of disturbed conditions		~	~	~	
it and Re	Restore habitat with native species that are tolerant of disturbed conditions and climatic extremes Identify and protect areas that may be buffered from the effects	~	~	~	~	~
Habitat Management and Restoration Activities	of climate change, including microhabitats that may provide cooler temperatures or maintain higher soil moisture during periods of drought	~	~			
Habitat N	Conduct a common garden experiment to determine which species are most likely to persist under projected climate conditions	~	~	~	~	
	Use species distribution modeling to improve understanding and acceptance of facilitated migration for plant species	>	~			
Watershed Improvement	Remove dikes, mining operations, and recharge basins that obstruct the migration ability of streams and sediment			~		
Wate	Require undeveloped buffers along streams Raise roads out of washes			>>		

2. Adaptation Brief

- Adaptation snapshot
- Lists key adaptation options, and provides brief description of implementation feasibility and effectiveness

Step 4. Adaptation Implementation

Goal: Create adaptation implementation plans for and/or integrate climate information into selected sites/projects

- Collaboratively integrate vulnerability and adaptation information into on-the-ground projects
 - Adaptation actions to implement first
 - How to implement
 - Lead organization/entity
 - Capacity needed

Step 4. Products

Implementation Plans 1.

Outline steps to take in what order, lead entity, capacity needed

2. Case Studies

Demonstrate how to integrate • climate vulnerability and adaptation information into on-the-ground projects

The Trabuco Creek Watershed Improvement Project

A Southern California Climate Change Adaptation Case Study

Overview

Climate change may affect the ability to achieve on-the-ground project goals and objectives. The following case study demonstrates how climate change vulnerability and adaptation information can be integrated into existing and future regional watershed improvement projects to increase overall project resilience. For this example, resource managers and regional stakeholders worked together to evaluate: 1) how climate and non-climate vulnerabilities could impact the ability to achieve project goals, 2) what current project actions help to address or minimize vulnerabilities, and 3) what new actions could be added to the project to address remaining vulnerabilities. While this specific project has already been completed, developing and revising watershed improvement plans is a common activity in southern California, and this type of process could easily be replicated in future projects.

Trabuco Creek Project **Goals and Actions**

The Cleveland National Forest conducted a watershed improvement project in Trabuco Creek, a stream in the semi-arid Santa Ana Mountains with high recreation use. including multiple private recreation residences, and several instream dams and hardened road crossings (i.e., fords). The goals of this project were to:

- 1. Improve aquatic organism passage by increasing and maintaining stream habitat connectivity; and
- 2. Improve stream and riparian habitat quality,
- sustainability, function, and availability for fish, reptiles, amphibians, and birds.

Primary project actions included:

- · Remove barriers to aquatic organism passage (e.g., small-scale, non-functioning instream fords and dams)
- Add channel complexity Remove invasive vegetation

Increased invasive plants

ACTION: Remove barriers to aquatic organism passage

STEP

TWO:

Increases stream habitat availability by allowing access to upstream areas

Identifying Climate and Non-Climate Vulnerabilities How may climate change and non-climate stressors affect the ability to meet goals or implement project actions? ONE:

 Impacts stream habitat availability and correct and contract of the stream habitat availability availability and contract of the stream habitat availability availability and contract of the stream habitat availability availabili by reducing or eliminating streamflow Impacts riparian habitat quality and composition decreasing water availability, and may favor species

Increased flooding

ncreased drought

 Impacts stream habitat quality and function increasing erosion, channel scour, and pollu Impacts riparian habitat guality, composition

distribution by increasing disturbance

Increased air temperature

 May affect movement or survival of tempera sensitive aquatic organisms by increasing w temperature

✓ Increases stream habitat quality by slowing floodwaters to minimize channel scour and erosion Increases stream habitat availability and functioning by increasing habitat complexity ✓ Increases available refugia from high water temperatures by promoting pooling of cool, deep water Increases water availability for riparian habitats by slowing floodwaters

✓ Increases stream habitat connectivity and aquatic organism passage by removing physical barriers

Reducing Vulnerabilities Through Existing Project Actions

Which existing project actions help address potential vulnerabilities?

✓ Reduces potential for riparian habitat composition and distribution changes by slowing floodwaters

ACTION: Add channel complexity

ACTION: Remove invasive vegetation Increases riparian habitat guality and functioning by reducing invasive species pressure ✓ Maintains riparian and stream habitat quality by reducing risk of wildfire and associated elevated erosion

ACTION: Build a system water budget to better manage water and multiple uses Increases stream habitat availability and connectivity and maintains water availability for riparian vegetation by mitigating potential harmful water extractions that could reduce streamflow

ACTION: Manage recreation in sensitive habitat areas

 Reduces erosion and unwanted sediment movement ✓ Maintains riparian water availability and increases stream habitat availability and connectivity by

limiting recreational water use and extractions

ACTION: Manage erosion and sedimentation associated with roads and other infrastructure

Reduces erosion and unwanted sediment movement

ACTION: Manage for fire (e.g., consider fire risk in restoration projects)

- ✓ Reduces likelihood of erosion and unwanted sediment movement by mitigating fire risk
- Reduces flood volumes by promoting a vegetated landscape that slows runoff

+1 206 201 3834

Funded by the U.S. Forest Service and California Landscape Conservation Coope

Opportunities for Collaboration

- **1. Vulnerability assessment**: Review draft assessments for resources of interest
- **2. Adaptation planning**: Review draft strategies/actions
- **3. Adaptation implementation:** Participate in workshops (date TBD)

Project Methodology

Assessment

Phase 2: Adaptation Planning

Workshop Objectives

Day 1

- Provide participants with an overview of projected future trends for the region
- Assess vulnerabilities of habitats to climate change and identify adaptation strategies

Day 2

- Present case studies of moving from adaptation planning to implementation
- Assess vulnerabilities of species groups/species and identify adaptation strategies

Questions?

Example products from other efforts:

- Climate Adaptation Project for the Sierra Nevada

 http://ecoadapt.org/programs/adaptation-consultations/calcc
- Southern California Climate Adaptation Project

 http://ecoadapt.org/programs/adaptation-consultations/socal

