Golden Gate Biosphere Network (GGBN) Climate Vulnerability Assessment

Prepared by Kai Foster Pepperwood

December 2022

Contents

Overview and methods Geographic extents Metrics Future scenarios Temperature Precipitation

Climatic Water Deficit

What's Next - Vegetation Assessement

Overview and Methods

Project Overview

Methods | GEOGRAPHIC EXTENTS

Geographic Extent

- Golden Gate Biopshere Analysis Area Golden Gate Biosphere Land Unit Area

Protected Areas

- Golden Gate Biopshere Protected Areas
- Protected Areas
- **Conservation Easement**

Boundaries

- County Boundaries
- Landscape Unit

Methods | GEOGRAPHIC EXTENTS

We summarized climate data for the terrestrial area of GGBN (1) and Landscape Unit (14) boundaries

Landscape Units

Conservation Lands Network (CLN)

Landscape Units are geographic divisions based on physiographic* features, and inform the vegetation vulnerability model.

*Factors, excluding climatic-biotic, and edaphic conditions, affecting Prevailing habitat conditions and biotic distributions (e.g. topography, Drainage, erosion)

- I Northern Mayacamas Mountains
- 2 -Russian River Valley
- 3 Sonoma Coast Range
- 6 Southern Mayacamas Mountains
- 7 Santa Rosa Plain
- 10 Sonoma Valley
- II Sonoma Mountain
- 12 Coastal Grasslands
- 16 Marin Coast Range
- 17 Point Reyes
- 22 San Francisco Bay and Badlands
- 25 San Francisco
- 30 Santa Cruz Mountains North
- 33 Santa Cruz Mountains Mid

VARIABLE	METRIC	ABBREV.	
	Temperature annual mean	Temp AVG	
Air temperature	Summer Maximum Temperature Mean for jun, jul, aug	Tmax JJA	B lemperature metrics
	Winter Minimum Temperature Mean for dec, jan, feb	Tmin DJF	
	Precipitation ANNUAL MENA	PPT AVG	
	Winter Maximum Precipitation MEAN FOR DEC, JAN, FEB	PPT Max	Hydrologic
Hydrology	Winter Minimum Precipitation MEAN FOR JUN, JUL, AUG	PPT Min	metrics
	Water Supply Indicator RUNOFF + RECHARGE	WSI	
	Climatic Water Deficit	CWD	

We evaluated 8 climate variables

Basin Characterization Model (BCM) Translating climate to watershed response

V8 +Vegetation

Temperature

Solar Radiation

Precipitation

Topography

Soils

Geology

Each climate variable was assessed for 4 climate scenarios

We evaluated each climate variable at two time periods:

I. Recent (1981 - 2010)

2. Late-century (2070 - 2099)

Late-century values were calculated for **3 climate projections** that span a range of temperature and precipitation conditions Statewide Model Comparison

Hot/Wet

CMCC-CMS CCESS1-0 Hot/Dry 4.5 5 5.5 Change in Temperature (°C)

We evaluated 4 time slices and mapped 1

VARIABLE	METRIC		RECENT	CNRM-CM5 RCP8.5	CCSM4 RCP .5	HADGEM2-CC RCP8.5
	Temperature annual mean	AVG				
Air temperature	Summer maximum temperature MEAN FOR JUN, JUL, AUG	JJA	\bigcirc	5	\sim	\sim
	Winter minimum temperature Mean for dec, jan, feb	DJF		6	0	
	Precipitation Annual mean	AVG				
	Summer maximum precipitation MEAN FOR JUN, JUL, AUG	JJA	$\overline{0}$			
Hydrology	Winter minimum precipitation Mean for dec, jan, feb	DJF	$\overline{\circ}$	\mathbf{a}		
	Climatic Water Deficit ANNUAL MEAN	AVG				
	Water Supply Indicator RUNOFF + RECHARGE	AVG				

Temperature

Temperature | SUMMARY

Mean Temperature ($^{\circ}$ C)		Average (AVG)		Winter Minimum (DJF)			Summer Maximum (JJA)		
	CNRM-CM5	CCSM4	HadGEM2-CC	CNRM-CM5	CCSM4	HadGEM2-CC	CNRM-CM5	CCSM4	HadGEM2-0
Recent		14.3		4.9			26.0		
Late-Century	16.6	16.6	17.7	5.4	7.1	7.1	29.0	28.6	30.2
Change	2.2	2.2	3.6	0.6	2.2	2.2	2.6	2.2	3.8
Range of Change	+2.2 °C to +3.6 °C			+0.6 °C to +2.2 °C			+2.3 °C to +3.8°C		

Temperature | ANNUAL AVERAGE

Temperature | ANNUAL AVERAGE

Temperature | WINTER MINIMUM

1)

-2.8

Change from Recent

MEAN = 2.2 °C

Temperature | SUMMER MAXIMUM

Late-Century. (HadGEM2-CC)

38

-3

Change from Recent

$MEAN = 3.8 \,^{\circ}C$

Temperature (°C) CHANGE

Temperature | SEASONAL (WINTER & SUMMER)

Temperature | BY MODEL

The trend for all models was an increase in temperature by late-century

Precipitation

Precipitation | SUMMARY

Mean Precipitation (mm)		Average (AVG)		Winter Minimum (DJF)			Summer Maximum (JJA)		
	CNRM-CM5	CCSM4	HadGEM2-CC	CNRM-CM5	CCSM4	HadGEM2-CC	CNRM-CM5	CCSM4	HadGEM2-0
Recent		1027			591			3	
Late-Century	1423	1212	1116	957	815	716	21		4
Change	+397	+186	+90	+365	+223	+124	+18	+7	+
Range of Change	+90r	nm to +39	7mm	+ 24	4mm to +3	65 °C	+	7mm to +I	Imm

Hydrology | ANNUAL PRECIPITATION

Recent (1981-2010)

MEAN = 1027 mm(431 - 1829) **V** 430

Precipitation (mm) 30-YEAR MEAN

(450 - 2517)

Data Source: Flint & Flint 2014

Climatic Water Deficit

Basin Characterization Model (BCM) Translating climate to watershed response

/8 +Vegetation

Temperature

Solar Radiation

Precipitation

Topography

Soils

Geology

Hydrology | CLIMATIC WATER DEFICIT

Climatic Water Deficit (CWD) A METRIC OF DROUGHT STRESS

Potential Climatic ClimaticPotentialActualWater DeficitEvapotranspirationEvapotranspiration

Actual

This metric integrates the effects of temperature and rainfall

CWD correlated with both vegetation vulnerability and fire risk

2.0

Hydrology | CLIMATIC WATER DEFICIT

Data Source: Flint & Flint 2021

Change from Recent MEAN = 37 mm(Increase deficit) Water Deficit (mm) CHANGE 1250 -959

DATA BASIN | <u>databasin.org</u>

DATA BASIN | GALLERIES | GOLDEN GATE BIOSPHERE NETWORK CLIMATE ADAPTATION

Gallery Contents	Gallery Credits	Comments (0)
Boundaries	(no content)	

Next Steps Vegetation Vulnerability Assessment

Vegetation | OVERVIEW

How are vegetation types expected to shift in response to climate change?

Vegetation distribution were mapped for four climate futures Representing key rainfall and temperature combinations

TOPOGRAPHY

DISTRIBUTIONS

Vegetation | OVERVIEW

Species-specific potential responses to climate change

Struggling oaks

Thriving bushes

TBC3 Ter Clim

Project Timeline

