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Discussion Topics 

•  Climate change for California 
•  Methods to evaluate hydrologic impacts 

–  Water balance modeling 
–  Downscaling projections 

•  Processes contributing to impacts 
–  Timing of springtime snowmelt 
–  Soil moisture 
–  Cold air pooling and refugia 
–  Climatic water deficit 
–  Changes in delivery mechanisms: recharge 

vs runoff 

•  Implications for land and resource 
management 
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Climate for California: 
current and future conditions – 4 scenarios 



Climate for California: Extremes 

Atmospheric Rivers! 



Climate Change  
and Extremes 



Translating climate change to 
hydrologic response 

•  Requires an approach to simulate 
hydrology from available information 
•  Basin Characterization Model (BCM) 

–  grid-based data 
–  uses climate data, soils, and geology to 

calculate 
–  potential evapotranspiration 
–  recharge and runoff 
–  actual ET 
–  climatic water deficit 
–  snow accumulation and snow melt 
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Soil moisture storage 
from SSURGO soils 







Impacts of a changing climate on 
hydrologic processes 

•  Soil moisture 
•  Snowpack and springtime runoff 
•  Changes in mechanisms for 

water delivery, partitioning 
recharge and runoff 

•  Cold-air pooling and refugia 
•  Climatic water deficit 

•  Demand estimates 
•  Landscape stress and resiliency 
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Changes in April 1st snowpack (SWE) 

•  Change from 
baseline 
(1951-1980) to 
current (1981-2010) 

•  Decreases due to 
warming at all but 
the highest 
elevations 



Downscaling  
Climate Change Scenarios 

•  Data are spatially 
downscaled to 270-m 
using Gradient-Inverse-
Distance-Squared 
interpolation for hydrologic 
model application 

•  For every month an 
equation is developed for 
every grid cell using 
northing, easting, and 
elevation to incorporate 
elevational and regional 
gradients 
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Upper Tuolumne Basin GFDL A2 
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Upper Tuolumne Basin 
Surface runoff contribution, no baseflow 
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Rch/run increases 

Rch/run decreases 

•  Loss of snow cover increases 
recharge 

•  Higher peak flows and 
compressed wet season increase 
runoff where there is shallow 
soils or no snow cover 

•  Deep soils can maintain recharge 
processes with compressed 
season, higher peaks, and 
increasing aridity 

Changes in  
Recharge/Runoff  

Mechanisms 
How water is delivered to the system 

will change 
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following Lundquist et al. 2008 

Snow data to assess cold-air pooling 
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Projected changes in wolverine habitat for 
consideration of reintroduction to Sierra Nevada 

•  Used 8 scenarios of climate change, size of home ranges, and relationship 
between snowpack and fecundity 

•  Currently enough habitat to support 170 adult female home ranges declining 
to 70 by 2100 

•  Depending on scenario 
•  Projections of increased habitat to 60% loss by mid-century 
•  11% to 90% loss by end of century 
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Climatic Water Deficit 
 

Annual evaporative demand  
that exceeds available water 

 

Potential – Actual Evapotranspiration 

•  Integrates climate, energy loading, 
drainage, and available soil 
moisture storage 

•  Vegetation independent  (indicator) 
•  Address irrigation demand 
•  Generally increases with all future 

climate scenarios 

PET 

SUPPLY 
DEFICIT 
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Summary 
•  GCM output provides projections of climate 

change for the next century 
•  Needs downscaling for effective application and 

translated to hydrologic response to provide 
impacts of the interrelated processes at 
landscape level 

•  Climate change impacts hydrology with local 
variations 

•  Impacts in the Sierra Nevada and implications 
for management 
–  Rising air temperatures and earlier and 

more variable springtime snowmelt 
–  More frequent summer droughts 
–  Uncertainties in runoff due to soil moisture 
–  Landscape stresses due to increasing CWD 

•  Species distributions, forest health, wildfire 

–  Fine scale representation offers potential 
refugia and connectivity 


