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Seeps and Springs 
Climate Change Vulnerability Assessment for the Santa Cruz Mountains Climate Adaptation Project 

This document represents an initial evaluation of mid-century climate change vulnerability for seeps 
and springs in the Santa Cruz Mountains region based on expert input during an October 2019 
vulnerability assessment workshop as well as information in the scientific literature. 

 

Habitat Description 

Springs and seeps (i.e., low-discharge springs) are the physical locations where groundwater is 
discharged from aquifers to the Earth’s surface1, with discharge rates varying seasonally depending on 
the depth and size of the supporting aquifers2. Deep aquifers are often confined or semi-confined, 
meaning that an impermeable layer of dirt, clay, and/or rock prevents water from seeping directly 
from the ground surface down into the aquifer below3. This results in longer delays in recharge and 
longer water residence time4. Shallow, unconfined aquifers experience more rapid recharge as water 
percolates from the surface directly into the aquifer4. 

In the Santa Cruz Mountains region, seeps and springs are abundant and productive in the middle to 
upper elevations of the mountain ranges, and common but less productive along the coast. They often 
occur naturally near landslides, faults, anticlines, and other geologic features5. Others are created 
through human intervention in areas that would not otherwise have groundwater discharge to the 
surface5. 

 

Vulnerability Ranking 
             

Seeps and springs are sensitive to climate stressors and disturbance regimes that alter groundwater 
recharge and discharge, including changes in patterns of precipitation and runoff, increased drought, 
altered wildfire regimes, and more frequent and intense storms and flooding. Non-climate stressors 
including groundwater extraction, surface water diversions, and livestock grazing can exacerbate 
habitat sensitivity to climate changes by altering groundwater dynamics, degrading water quality, and 
increasing stress on groundwater-dependent plant communities. Seeps and springs are distributed 
widely throughout California but are static and often isolated landscape features, reducing the 
potential for associated flora and fauna to shift their range in response to climate changes and 
disturbance. In general, seeps and springs are fairly resistant to stressors such as increased 
temperature, hydraulic flow changes, and drought, especially when they are connected with deep 
groundwater sources or large regional aquifers. However, climate-driven increases in groundwater 
withdrawals during dry periods can cause more rapid depletion than would otherwise occur. Multiple 
opportunities exist to adjust land-use practices and reduce non-climate impacts on seep and spring 
ecosystems, improving their ability to cope with climate impacts. These include reducing 
anthropogenic groundwater withdrawals and water diversions, managing grazing intensity, and 
mapping and monitoring seep and spring ecosystems. 
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Sensitivity and Exposure 
             

Sensitivity is a measure of whether and how a habitat is likely to be affected by a given change in 
climate and climate-driven factors, changes in disturbance regimes, and non-climate stressors. 
Exposure is a measure of how much change in these factors a resource is likely to experience. 

Sensitivity and future exposure to climate and climate-driven factors         
Seeps and springs are sensitive to climate stressors that alter groundwater recharge and discharge, 
including changes in patterns of precipitation and runoff and increased drought. 
 

Climate Stressor Trend Direction Projected Future Changes 

Precipitation & 
runoff ▲▼ 

• Uncertain trends in precipitation and runoff 

• Shorter winters and longer, drier summers likely, with higher 
interannual variability6,7 

Drought ▲ 
• Increased frequency of drought years, including periods of 

prolonged and/or severe drought6,8 
 

• Changes in patterns of precipitation and runoff are likely to affect the magnitude and timing of 
groundwater recharge9, potentially impacting spring hydrology and associated plant 
communities. Shifts towards shorter winters and prolonged dry seasons, coupled with 
increased frequency of drought, are likely to limit recharge to local groundwater systems10. If a 
greater proportion of annual rainfall occurs during heavy precipitation events, there may also 
be less opportunity for water to infiltrate the soil because the amount of runoff will be greater; 
ultimately, this may result in reduced groundwater recharge and increased flooding in low-lying 
areas10. These changes can impact vegetation productivity, survival, and community 
composition in plant associations adjacent to seeps and springs11–14, which are generally 
comprised of facultative or obligate phreatophytes (i.e., species that access groundwater 
directly through their root systems)13. 

• Increases in the severity and length of future droughts can result in the drying of springs15, 
particularly if declines in surface water supplies drive increased reliance on groundwater 
resources for agricultural and municipal uses16,17. However, changes in the discharge rate of 
springs generally occur more gradually and lag behind changes in systems that depend on 
surface runoff, especially for high-volume springs or those connected to large regional 
aquifers18,19. 

Sensitivity and future exposure to climate-driven changes in disturbance regimes         
Seeps and springs are sensitive to changes in disturbance regimes that alter groundwater recharge and 
water quality, as well as those that cause direct plant mortality and/or damage from landslides. 
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Disturbance Regimes Trend Direction Projected Future Changes 

Wildfire ▲ 
• Slight to moderate increase in wildfire risk, particularly in 

areas of higher rainfall20,21 

Storms & flooding ▲ 
• Increased storm intensity and duration, resulting in more 

frequent extreme precipitation events and flooding6,22,23 
 

• Altered wildfire regimes can influence vegetation distribution and soil properties, which in turn 
affects infiltration from precipitation, how plants use water, and the resulting groundwater 
levels and recharge rate24,25. Vegetation loss in burned areas exacerbates erosion and mass 
wasting and high-intensity fires can also make soil hydrophobic for a period of time, increasing 
runoff and reducing infiltration and landscape water retention26,27. The introduction of ash into 
the system can also alter water pH levels28. 

• More intense and/or frequent storms and associated flooding can benefit groundwater-
dependent ecosystems by contributing to recharge29. However, storm-related runoff and 
severe flooding can scour seep and spring ecosystems, resulting in vegetation removal and 
often increasing the presence of non-native riparian plants28. Severe flooding is most common 
in and around seeps and springs associated with riverine systems and/or those located in the 
bottom of a gully 28, and can result in landslides that temporarily or permanently alter spring 
ecosystems5. 

Sensitivity and current exposure to non-climate stressors         
Non-climate stressors can exacerbate seep and spring habitat sensitivity to changes in climate factors 
and disturbance regimes by altering groundwater dynamics, degrading water quality, and increasing 
stress on groundwater-dependent plant communities. 

• Groundwater extraction (e.g., pumping) and surface water diversions for municipal, industrial, 
and agricultural use have been associated with declines in spring discharge30–33, decreasing 
vigor in seep and spring plant communities13 and limiting water availability for wildlife. 
Increases in both groundwater extraction and surface water diversions occur during periods of 
low precipitation and drought32,33, and are likely to be further exacerbated by growing human 
populations in the state34.  

• Land-use conversion for residential/commercial development additionally impacts soil 
infiltration, runoff, and water quality3,35. For instance, runoff from impervious surfaces and/or 
compacted soils in developed areas can introduce contaminants into shallow aquifers 
connected to springs3. 

• Livestock grazing can degrade seep and spring ecosystems by compacting soils, removing 
vegetation, and increasing nutrient inputs, depending on grazing intensity. Soil compaction 
decreases groundwater recharge and increases runoff, potentially impacting water supplies for 
seeps and springs36. Grazing can reduce vegetation height and cover37,38, and is associated with 
changes in herbaceous species composition and diversity37. The abundance of aquatic fauna, 
such as springsnails (Pyrgulopsis spp.), can also be reduced by livestock grazing around 
springs39. In addition, concentrated livestock feeding operations increase nutrient pollution that 
affects water quality in groundwater-dependent systems40. 
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Adaptive Capacity 
         

Adaptive capacity is the ability of a habitat to accommodate or cope with climate change impacts with 
minimal disruption. 

Habitat extent, integrity, continuity, and barriers to dispersal         
Seeps and springs are distributed widely but unevenly throughout California2. They are static and often 
isolated landscape features2, reducing the potential for associated flora and fauna to shift their range 
in response to climate changes and disturbance41. Additionally, the integrity of some systems has been 
threatened by groundwater depletion, pollution, and other anthropogenic impacts1. 

Habitat diversity         
Seeps and springs support biologically rich ecosystems and can include aquatic, wetland, and terrestrial 
species that are dependent on or benefit from groundwater for persistence2. Due to their high 
environmental stability and varied chemical composition, seep and spring ecosystems often include 
many rare/endemic species and unique assemblages42,43. Within the Santa Cruz Mountains study area, 
this includes the state-listed fountain thistle (Cirsium fontanale var. fontanale), which is associated 
with spring-fed serpentine soils in parts of San Mateo County44. Cold spring waters also support 
breeding California red-legged frogs (Rana aurora draytonii)45, a federally-listed threatened species46. 

Resistance and recovery         
In general, seeps and springs are fairly resistant to stressors such as increased temperature, hydraulic 
flow changes, and drought, especially when they are connected with deep groundwater sources or 
large regional aquifers4,12,13,19,47. However, climate-driven increases in groundwater withdrawals during 
dry periods can cause more rapid depletion than would otherwise occur13,32. Additionally, deep and/or 
confined aquifers are more likely to contain non-renewable groundwater, which is particularly 
vulnerable to anthropogenic withdrawals48,49. Seep and spring ecosystems likely have strong recovery 
potential following disturbances such as drought, although prolonged drought may alter vegetation 
types by favoring more upland species5. 

Management potential         
Although seeps and springs are often not well-recognized or understood5, they are highly valued and 
represent critical resources for human communities and wildlife2. They are also likely to provide 
hydrological refugia for plants and animals as surrounding habitats become progressively warmer and 
drier50. Despite these critical ecosystem services, relatively little societal support for management 
exists5. For instance, springs are exempt from regulation under the federal Clean Water Act because 
they are considered “isolated waters of the state"51. However, the 2014 Sustainable Groundwater 
Management Act (Cal. Code Regs. 23 § 350–358) supports efforts to preserve groundwater-dependent 
ecosystems by decreasing groundwater withdrawals and relocating wells that affect aquifer recharge48. 
Springs are also protected by the Porter-Cologne act in California5. 

Protection and management of seeps and springs are hindered by significant knowledge gaps (e.g., lack 
of comprehensive mapping efforts)2, though the scientific literature documents multiple opportunities 
to adjust land-use practices and reduce non-climate impacts on seep and spring ecosystems. These 
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include reducing anthropogenic groundwater withdrawals32,33,52 and water diversions5, managing 
grazing intensity through fencing or alternative grazing approaches14,53,54, and providing guidance for 
land management (e.g., fuel reduction, restoration) activities to lessen impacts on ecosystems 
associated with seeps and springs55,56. Mapping and monitoring seep and spring ecosystems would also 
allow the use of adaptive management strategies designed to protect groundwater supplies and critical 
habitat for the many rare and endemic species that utilize these areas2,33. 

 

Recommended Citation 

EcoAdapt. 2021. Seeps and Springs: Climate Change Vulnerability Assessment Summary for the Santa 
Cruz Mountains Climate Adaptation Project. Version 1.0. EcoAdapt, Bainbridge Island, WA. 

Further information on the Santa Cruz Mountains Climate Adaptation Project is available on the project 
page (http://ecoadapt.org/programs/awareness-to-action/santa-cruz-mountains). 
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