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Oak Woodlands 
Climate Change Vulnerability Assessment for the Santa Cruz Mountains Climate Adaptation Project 

This document represents an initial evaluation of mid-century climate change vulnerability for oak 
woodlands in the Santa Cruz Mountains region based on expert input during an October 2019 
vulnerability assessment workshop as well as information in the scientific literature. 

 

Habitat Description 

Oak woodlands within the Santa Cruz Mountains region are commonly dominated by coast live oak 
(Quercus agrifolia), valley oak (Q. lobata), and/or blue oak (Q. douglasii)1,2. Other oak species that may 
co-occur (and occasionally dominate a stand) include interior live oak (Quercus wislizeni), canyon live 
oak (Q. chrysolepis), black oak (Q. douglasii), scrub oak (Q. berberidifolia), and leather oak (Q. durata; 
on serpentine soils)1,3. Oak distribution and woodland species composition are strongly influenced by 
slope, elevation, drainage, soils, and other site-specific characteristics1,4. Habitat structure is relatively 
open (30–60% canopy cover) with an understory comprised of native and non-native grasses and forbs, 
as well as a limited variety of shrubs such as poison oak (Toxicodendron diversilobum) and honeysuckle 
(Lonicera spp.)1,2. 

 

Vulnerability Ranking 
             

Oak woodlands are sensitive to climate stressors that alter water availability and/or soil temperature, 
including changes in precipitation amount and timing, reduced soil moisture, increased drought, and 
warmer air temperatures. These can impact acorn germination and seedling/sapling growth and 
survival, ultimately determining future habitat distribution. Climate-driven changes in disturbances 
(e.g., wildfire, disease, insect outbreaks) have the potential to increase oak mortality, and may alter 
habitat structure and composition due to age- or species-specific patterns of mortality. Non-climate 
stressors (e.g., development, fire suppression/exclusion, invasive plants, livestock grazing, nitrogen 
deposition) can further exacerbate habitat sensitivity by contributing to climate-driven changes in the 
fire regime, reducing species and structural diversity, altering ecosystem processes, and fragmenting or 
eliminating woodland areas. 

Although oak woodlands remain widely distributed within the Santa Cruz Mountains region, historical 
habitat extent has been significantly reduced by development and other anthropogenic land uses, and 
many of the remaining woodlands have been degraded and/or fragmented. Overall, oaks are well-
adapted to survive disturbances such as drought and wildfire, but low recruitment rates and increased 
mortality due to climate change and other stressors may limit the ability of this habitat to recover from 
future disturbances. Management strategies that may increase the resilience of oak woodlands to 
climate impacts include increased use of prescribed fire, restoration of native perennial grasses and 
forbs, climate-informed management of livestock grazing, and protection of oak woodlands within 
climatically-suitable areas and/or potential refugia. 
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As part of this project, Pepperwood Preserve modeled how major vegetation types in five landscape 
units of the Santa Cruz Mountains region are projected to shift in response to climate change.1 For oak 
woodlands, they found that canyon live oak and black oak forests/woodlands are expected to undergo 
dramatic declines across all landscape units, while valley oak forests/woodlands are expected to 
increase in all units. Other oak woodland types show more varied responses within the region, with 
increases or relatively stable distribution in some areas and moderate to dramatic declines in others. 
 

Vegetation Type 
San 

Francisco 
Santa Clara 

Valley 
Santa Cruz 

Mtns. North Santa Cruz Sierra Azul 

Valley oak forest/ 
woodland △ △ △ △ △ 

Blue oak forest/ 
woodland △ △ △ － △ 

Interior live oak 
forest/woodland 

－ △ △ － △ 

Coast live oak 
forest/woodland ▽ ▽ △ △ ▽ 

Blue oak-foothill 
pine woodland △ － ▽ ▽ － 

Oregon white oak 
woodland － ▽ ▽▽ － ▽ 

Black oak forest/ 
woodland ▽▽ ▽▽ ▽▽ ▽▽ ▽▽ 

Canyon live oak 
forest ▽▽ ▽▽ ▽▽ ▽▽ ▽▽ 

Table 1. Projected trends in vegetation distribution (increase, relatively stable, moderate decline, or dramatic 
decline) by mid-century within five landscape units of the Santa Cruz Mountains region. 

 

Sensitivity and Exposure 
             

Sensitivity is a measure of whether and how a habitat is likely to be affected by a given change in 
climate and climate-driven factors, changes in disturbance regimes, and non-climate stressors. 
Exposure is a measure of how much change in these factors a resource is likely to experience. 

Sensitivity and future exposure to climate and climate-driven factors         
Oak woodlands are sensitive to climate stressors that alter water availability and/or soil temperature, 
which can impact oak growth, recruitment, and vulnerability to disturbance-related mortality.  
 

 
1 Information about the methods used to generate these projections can be found on the project page 
(http://ecoadapt.org/programs/awareness-to-action/santa-cruz-mountains). 
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Climate Stressor Trend Direction Projected Future Changes 

Precipitation ▲▼ 
• Shorter winters and longer, drier summers likely, with higher 

interannual variability5,6 

Soil moisture ▼ 
• Reduced soil moisture likely due to increased evaporative 

demand5,7 

Drought ▲ 
• Increased frequency of drought years, including periods of 

prolonged and/or severe drought5,8 

Air temperature ▲ 
• 1.5–3.1°C (2.7–5.6°F) increase in annual mean 

temperature9,10 
 

• Changes in precipitation (e.g., amount and timing) and soil moisture are likely to reduce acorn 
production, seedling establishment, and tree growth2,11–14, ultimately affecting oak woodland 
species composition and distribution12,15. In general, oak seedlings and saplings are more 
sensitive to water stress than adults12,16,17, in part because their root systems are not able to 
reach the groundwater sources that often support mature oaks17. As a result of their sensitivity 
to moisture stress, range contractions may occur where seedlings are unable to survive in areas 
that would be considered climatically suitable for the persistence of adult trees12. The timing of 
precipitation also has a large impact on oak recruitment, which may be negatively impacted by 
saturated soils following continuous rain3. 

Increases in winter rainfall would likely enhance spore production and transmission of the 
pathogen that causes sudden oak death, increasing infection risk and associated mortality18,19. 
By contrast, dry conditions and low soil moisture could limit the spread and severity of this 
disease20,21. 

• Increases in the frequency and/or severity of drought are likely to decrease growth and 
recruitment and increase mortality rates in oaks11,12,17, especially where competition with 
annual plants (e.g., invasive grasses) further reduces available moisture for oak seedlings14,22,23. 
Persistence in moist, shaded microsites and areas with accessible groundwater may allow oaks 
to resist increasing drought stress24. However, greater drought sensitivity in seedlings and 
saplings could constrain the successful regeneration of mature oak woodlands12,24,25. 

• Warmer air temperatures and corresponding increases in winter soil temperatures are likely 
to reduce recruitment in species that require a period of cold temperatures to break seed 
dormancy and allow germination, including coast live oaks, canyon live oaks, and black oak26. 

Sensitivity and future exposure to climate-driven changes in disturbance regimes         
Oak woodlands are sensitive to climate-driven changes in disturbance regimes that increase direct 
mortality and/or alter habitat composition and structure.  
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Disturbance Regimes Trend Direction Projected Future Changes 

Wildfire ▲ 
• Slight to moderate increase in wildfire risk, particularly in 

areas of higher rainfall9,10 

Disease ▲ 
• Likely increases in spore production and infection risk of 

Phytophthora ramorum27,28 

Insect outbreaks ▲ 
• Likely increase in severity of insect outbreaks29,30 and 

continued range expansion of non-native insects31,32 
 

• Although oaks are well-adapted to low- and moderate-intensity fires1,33,34, climate-driven 
changes in the frequency and/or intensity of wildfires may increase tree injury and 
mortality33,35. Seedlings/saplings and smaller trees are significantly more likely to experience 
damage or mortality33,35. As a result, increases in the frequency of high-severity fires may 
negatively impact the persistence of oak woodlands where seedlings and sprouted trees are 
unable to mature and produce acorns before the next fire33. Repeated high-severity fire can 
result in conversion of oak woodlands to chaparral or grasslands over time36. 

• Increased disease may cause more extensive tree mortality as changes in temperature and 
moisture impact pathogen production and transmission as well as tree defenses, host 
susceptibility, and community interactions20,30,37,38. Within the Santa Cruz Mountains region, 
sudden oak death (caused by the introduced pathogen Phytophthora ramorum) is of particular 
concern. Sudden oak death causes high rates of injury and mortality in coast live oak and 
several other Quercus species, with the highest mortality rates occurring among large trees20,39–

41. Beetle attacks in infected trees can also speed mortality, reducing life expectancy by 65–
70%39. High rates of tree mortality and resulting shifts in species composition may also change 
patterns of fuel composition and availability, potentially altering fire behavior42–45. 

• Increased insect outbreaks may cause higher rates of oak mortality30, particularly if warmer 
temperatures drive range expansions in non-native insects such as the goldspotted oak borer 
(Agrilus auroguttatus; GSOB). The GSOB causes crown dieback and tree mortality within mature 
coast live oak, canyon live oak, and black oak46, and has been responsible for the mortality of 
over 80,000 oaks in San Diego County since 200247. Satellite infestations have more recently 
been discovered in Riverside (2012), Orange (2014, 2017), and Los Angeles (2015) counties as 
well48. Drought stress appears to increase the likelihood of GSOB-related mortality; conversely, 
insect damage to the phloem and cambium increases drought stress and vulnerability to 
secondary attack, particularly in older trees32,49. Projections suggest that much of the state will 
be climatically suitable for the GSOB by the end of the century, increasing the likelihood of 
range expansion31. 

Sensitivity and current exposure to non-climate stressors         
Non-climate stressors can exacerbate habitat sensitivity to changes in climate factors and disturbance 
regimes by contributing to changes in the fire regime, reducing species and structural diversity, altering 
ecosystem processes, and fragmenting or eliminating woodland areas.  

• Residential and commercial development has resulted in the loss and fragmentation of oak 
woodlands in the Santa Cruz Mountains region1,50, and has been associated with reduced 
genetic exchange and tree recruitment in fragmented populations51–53, altered plant and 
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wildlife composition, and overall decreases in biodiversity54. Development may also cause the 
loss of microrefugia that support oak regeneration, especially where human water use lowers 
groundwater tables24,25. Finally, development and associated human activity may increase 
wildfire ignitions, exacerbating climate-driven shifts in wildfire regimes55,56. 

• Fire exclusion and suppression has altered historical wildfire regimes in oak woodlands, 
increasing fire return intervals within the Santa Cruz Mountains region to over 150 years 
(compared to 1–2 years prior to Euro-American settlement)57,58. Reduced wildfire frequency 
within these fire-adapted communities has resulted in shifts in species composition and habitat 
structure across the region34,59,60. 

• Invasive annual grasses alter species composition within oak woodland understories, displacing 
native perennial bunchgrasses and reducing shallow soil moisture and light required for 
successful oak recruitment1,23. The establishment and spread of invasive grasses also increases 
available fine fuels and enhances fuel continuity, contributing to changes in fire frequency and 
behavior61,62.  

• Livestock grazing is common within oak woodlands63, with varied impacts depending on grazing 
intensity, timing, and vegetation composition14. In general, the greatest adverse effects 
generally occur on drier sites and in more open areas35. Top browsing by cattle decreases oak 
seedling/sapling growth and survival to adulthood14,35,64,65, and is believed to be a major factor 
contributing to lack of oak regeneration in some areas64. Livestock grazing can cause damage to 
understory shrubs, limiting nurse plants that protect fallen acorns and oak seedlings from high 
solar radiation, desiccation, and herbivory14. Grazing is also associated with the introduction of 
invasive annual grasses that reduce native herbaceous vegetation and contribute to changes in 
the fire regime1. 

• Nitrogen deposition from vehicle emissions near roads and highways can increase the 
productivity and dominance of non-native annual grasses66, contributing to shifts in oak 
woodland understories and associated changes in the fire regime.  

 

Adaptive Capacity 
         

Adaptive capacity is the ability of a habitat to accommodate or cope with climate change impacts with 
minimal disruption. 

Habitat extent, integrity, continuity, and barriers to dispersal         
Oak woodlands within the Santa Cruz Mountains region are widespread, though some types are highly 
restricted (e.g., black oak woodlands) while others are more common (e.g., coast live oak woodlands)3. 
Overall, oak woodland habitat extent has declined significantly over the past century due to 
anthropogenic factors such as land-use conversion to agriculture and development15,35,52,53,67. Changes 
in habitat structure and species composition (e.g., greater dominance of invasive annual grasses within 
the understory) have further degraded many remaining areas1,2,35, particularly valley oak woodlands3. 
Low recruitment is occurring in many species within the region3, and has been linked to state-wide 
population declines in valley oak and blue oak11,14,68. 
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Barriers to dispersal have a relatively low impact on oaks within the Santa Cruz Mountains region3. 
However, short pollen and acorn dispersal distances can limit pollination and genetic exchange in 
fragmented blue oak and valley oak populations51–53,69, which may reduce their ability to migrate in 
response to climate change15,52,70. Climate-driven changes in the distribution and/or abundance of 
seed-dispersing animals such as woodpeckers or ground squirrels could also limit regeneration and 
potential range shifts3. 

Habitat diversity         
As dominant canopy species, oaks create favorable microclimates for diverse understory vegetation 
and provide habitat for many wildlife species2,4,53,71. Oak woodlands are particularly important for birds 
and butterflies, but are also utilized by many mammals, reptiles, and amphibians3,4,71.  

Historically, plant species diversity within oak woodlands was high53,72, particularly in woodlands with 
more open canopies3. However, both plant and wildlife species diversity has declined over the past 
century due to factors such as fire suppression and invasive species72.  

Resistance and recovery         
The long lifespan of oak trees may increase their resistance to changing conditions, as even relatively 
rare survival of seedlings and saplings to adulthood can potentially offset adult mortality64. Mast 
seeding strategies (i.e., the production of large volumes of seed every few years) also increase the 
chances of successful oak recruitment73. Mature oaks are generally more resilient than seedlings and 
saplings, and oaks have several adaptations that allow them to survive disturbances such as drought 
and wildfire12,25,33. For instance, blue oaks and valley oaks have deep root systems that can access 
groundwater during periods of drought74–76. However, changing climate conditions and ongoing non-
climate stressors (e.g., grazing, invasive species, habitat fragmentation) may increase vulnerability to 
fire and other disturbances by limiting oak regeneration and increasing mortality rates in stressed 
trees52,77.  

Management potential         
Oak woodlands are iconic in California and are highly valued by the public for their aesthetic beauty 
(e.g., scenic vistas), recreational opportunities, wildlife habitat, and livestock grazing2,3,63,78. Oak 
woodlands are also of great cultural significance to California tribes, who use cultural burning and 
other management practices to maintain abundant acorn crops34,60,79. Societal support for oak 
woodlands is increasing as a result of enhanced regulatory protection and additional funding for 
research on sudden oak death3. Coast live oak and black oak woodlands are also listed as California 
Department of Fish and Wildlife sensitive natural communities, requiring that they be considered 
within environmental review processes3. 

Several studies have documented successful restoration efforts in oak woodlands64,80, suggesting that 
there is high potential for management strategies to support climate adaptation by creating favorable 
conditions for oak germination, growth, and reproduction3. For instance, ungulate and rodent 
exclusion can significantly reduce acorn and seedling/sapling herbivory, which contribute to low 
recruitment rates64,81. Exclusion is particularly effective when paired with restoration plantings of 
oak35,82,83. Restoring frequent low-intensity fire within these disturbance-adapted communities 
encourages oak recruitment and enhances native understory vegetation, though management of 
invasive annual grasses is often necessary1,33,80. The use of prescribed fire also has the potential to be 
scaled up over time in order to maintain oak woodlands at the landscape scale3. Other management 
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strategies that may support oak woodland adaptation to future climate changes include restoration of 
native perennial grasses and forbs, climate-informed grazing management (e.g., altering grazing 
intensity and timing in response to changing climate conditions), hunting to reduce deer and boar 
consumption of acorns, and increased seed storage3. Protection efforts should focus on areas that are 
projected to remain climatically suitable for dominant oak species, as well as in microrefugia that 
alleviate water stress24,25,70. 

 

Recommended Citation 

EcoAdapt. 2021. Oak Woodlands: Climate Change Vulnerability Assessment Summary for the Santa 
Cruz Mountains Climate Adaptation Project. Version 1.0. EcoAdapt, Bainbridge Island, WA. 

Further information on the Santa Cruz Mountains Climate Adaptation Project is available on the project 
page (http://ecoadapt.org/programs/awareness-to-action/santa-cruz-mountains). 
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