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Mixed Evergreen/Montane Hardwood Forest 
Climate Change Vulnerability Assessment for the Santa Cruz Mountains Climate Adaptation Project 

This document represents an initial evaluation of mid-century climate change vulnerability for mixed 
evergreen/montane hardwood forest in the Santa Cruz Mountains region based on expert input during 
an October 2019 vulnerability assessment workshop as well as information in the scientific literature. 

 

Habitat Description 

Mixed evergreen/montane hardwood forests are comprised of a mix of hardwoods and conifers 
including Pacific madrone (Arbutus menziesii), tanoak (Notholithocarpus densiflorus), Douglas-fir 
(Pseudostuga menziesii), canyon live oak (Quercus chrysopelis), interior live oak (Q. wislizenni), 
California black oak (Q. kelloggii), coast redwood (Sequoiadendron sempervirens), and California 
buckeye (Aesculus californica)1–3. California bay laurel (Umbellularia californica), white alder (Alnus 
rhombifolia), and western sycamore (Platanus racemosa) are also common in riparian areas1,3. The 
understory typically includes shrubs such as California nutmeg (Torreya californica), evergreen 
huckleberry (Vaccinium ovatum), and manzanita (Arctostaphylos spp.; in disturbed areas and near 
forest edges)1. Forest structure and composition can vary widely across sites depending on moisture 
balance, disturbance history, soil conditions, and topography2,4–6.  

 

Vulnerability Ranking 
             

Mixed evergreen/montane hardwood forests are sensitive to changes in climate factors that increase 
water demand (e.g., air temperature) or decrease water availability (e.g., precipitation, soil moisture, 
coastal fog, drought). These changes are likely to alter patterns of tree growth and mortality, resulting 
in shifts in species composition, forest structure, and regeneration. Changes in the frequency, timing, 
and/or intensity of disturbances (e.g., wildfire, storms, disease) may cause more extensive mortality, 
especially in stands where increased competition for soil moisture has reduced tree vigor. Non-climate 
stressors (e.g., timber harvest, fire suppression, invasive plants, roads/highways/trails, and 
development) can exacerbate habitat sensitivity by reducing forest extent and altering forest structure, 
species composition, ecosystem functioning, and connectivity. 

Mixed evergreen/montane hardwood forests are extensive within the Santa Cruz Mountains region. 
However, historical logging, land-use conversion, road construction, and other human activities have 
fragmented and degraded forests, reducing structural integrity and increasing vulnerability to 
disturbances such as uncharacteristically severe wildfires and drought. Resistance to climate stressors 
and altered disturbance regimes is supported by high landscape heterogeneity, and high structural and 
species diversity may support shifts in forest composition towards species adapted to warmer, drier 
conditions. However, climate change may also slow forest recovery following disturbances. 
Management activities designed to increase forest resilience to climate change are likely to focus on 
promoting spatial heterogeneity and structural complexity as well as protecting forests from 
anthropogenic stressors. 
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As part of this project, Pepperwood Preserve modeled how major vegetation types in five landscape 
units of the Santa Cruz Mountains region are projected to shift in response to climate change.1 For 
mixed evergreen/montane hardwood forests, they found highly variable trends across landscape units, 
though Douglas fir forest was consistently stable or increased in all areas; similarly, tanoak forest was 
projected to remain stable or undergo declines across all landscape units. 

 

Vegetation Type 
San 

Francisco 
Santa Clara 

Valley 
Santa Cruz 

Mtns. North Santa Cruz Sierra Azul 

Douglas fir forest △ － △ － － 

Montane 
hardwoods ▽ △ ▽ － ▽ 

California bay forest ▽▽ △ ▽ ▽ ▽ 

Tanoak forest ▽ － － ▽▽ ▽▽ 

Table 1. Projected trends in vegetation distribution (increase, relatively stable, moderate decline, 
or dramatic decline) by mid-century within five landscape units of the Santa Cruz Mountains 
region. 

 

Sensitivity and Exposure 
             

Sensitivity is a measure of whether and how a habitat is likely to be affected by a given change in 
climate and climate-driven factors, changes in disturbance regimes, and non-climate stressors. 
Exposure is a measure of how much change in these factors a resource is likely to experience. 

Sensitivity and future exposure to climate and climate-driven factors         
Mixed evergreen/montane hardwood forests are sensitive to climate stressors that change the water 
balance (e.g., increasing demand or decreasing availability), which alters patterns of tree growth and 
mortality and are likely to contribute to shifts in species composition, forest structure, and 
regeneration. 
 

Climate Stressor Trend Direction Projected Future Changes 

Precipitation ▲▼ 
• Shorter winters and longer, drier summers likely, with higher 

interannual variability7,8 

Coastal fog ▼ 
• Possible 12–20% decline in the frequency of days with coastal 

fog and low clouds9 

 
1 Information about the methods used to generate these projections can be found on the project page 
(http://ecoadapt.org/programs/awareness-to-action/santa-cruz-mountains). 
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Soil moisture ▼ 
• Reduced soil moisture likely due to increased evaporative 

demand7,10 

Air temperature ▲ 
• 1.5–3.1°C (2.7–5.6°F) increase in annual mean 

temperature11,12 

Drought ▲ 
• Increased frequency of drought years, including periods of 

prolonged and/or severe drought7,13 
 

• Changes in precipitation amount and timing, coastal fog, and soil moisture are likely to alter 
tree recruitment, growth, and mortality rates14–17, potentially leading to shifts in forest 
structure and species composition14,18–21. Water stress is most likely to limit growth and 
increase mortality on drier sites and at the southern edge of a species’ range16,19,22. Species that 
are sensitive to site-specific conditions (e.g., coast redwoods, riparian trees) may be particularly 
vulnerable to overall drier conditions, especially if coastal fog also becomes less frequent1,23.  

Increases in winter rainfall would likely enhance spore production and transmission of the 
pathogen that causes sudden oak death, increasing infection risk and associated mortality24,25. 
By contrast, dry conditions and low soil moisture could limit the spread and severity of this 
disease26,27. 

• Warmer air temperatures are likely to enhance water stress within mixed evergreen/montane 
hardwood forests due to increased evaporative demand12,15. However, warmer temperatures 
may also increase productivity and seedling recruitment in some hardwood species (e.g., Pacific 
madrone, California bay), enhancing competition with conifers and potentially contributing to 
shifts in species composition towards a greater proportion of hardwoods14,21. 

• More frequent and/or severe future droughts may cause significant tree mortality17,28–32, 
especially in large trees and on sites with higher competition for soil moisture17,30,31. Mortality 
rates typically increase as drought progresses over multiple years31, and the effects of severe 
drought (e.g., growth declines, high tree mortality rates) can persist for several years after the 
drought is over32,33. Under future climate conditions, prolonged and/or severe droughts may 
cause large-scale forest dieback, with higher rates of mortality occurring where trees have 
already been stressed by climate-driven increases in wildfire, insect outbreaks, disease, and 
previous droughts17,30,31,34,35. 

Sensitivity and future exposure to climate-driven changes in disturbance regimes         
Mixed evergreen/montane hardwood forests are sensitive to disturbances that alter forest structure 
and contribute to major shifts in species composition, which may ultimately impact ecosystem 
function. 
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Disturbance Regimes Trend Direction Projected Future Changes 

Disease ▲ 
• Likely increases in spore production and infection risk of 

Phytophthora ramorum36,37 

Wildfire ▲ 
• Slight to moderate increase in wildfire risk, particularly in 

areas of higher rainfall11,12 

Storms ▲ • Increased storm intensity and duration7,38,39 
 

• Increased disease may cause more extensive tree mortality as changes in temperature and 
moisture impact pathogen production and transmission as well as tree defenses, host 
susceptibility, and community interactions26,35,40,41. Within the Santa Cruz Mountains region, 
sudden oak death (caused by the introduced pathogen Phytophthora ramorum) is of particular 
concern. Sudden oak death causes high rates of injury and mortality in tanoak and true oaks 
(e.g., coast live oak), particularly for large trees26,42–44. Beetle attacks in infected trees can also 
speed mortality, reducing life expectancy by 65–70%42. Because the impacts of sudden oak 
death are species-specific, patterns of mortality can significantly alter forest structure and 
species composition43–45. For instance, significant losses of large tanoak trees is likely42,43, which 
may shift overstory composition towards species with lower susceptibility to infection46. High 
rates of tree mortality and resulting shifts in species composition may also change patterns of 
fuel composition and availability, potentially altering fire behavior47–50. 

• Mixed evergreen/montane hardwood forests are well-adapted to low- to moderate-intensity 
surface fires2,51. However, climate-driven increases in the frequency and/or severity of 
wildfires may increase tree mortality and cause substantial modifications in forest structure 
and composition by favoring post-fire dominance of sprouting hardwoods and shrubs52–55. 
These changes are particularly likely within the interior of larger high-severity patches, where 
conifer recovery may be delayed due to lack of seed sources in combination with warmer, drier 
conditions that limit seedling establishment56,57. Repeated high-severity fire can also alter 
forest structure and prevent the development of later-successional stages by killing seedlings 
and sprouting stems before trees have matured and developed more fire-resistant 
characteristics58,59.  

• Increased frequency and/or severity of storms may cause more frequent tree mortality due to 
windthrow and landslides, particularly in burned areas1,2. 

Sensitivity and current exposure to non-climate stressors         
Non-climate stressors can exacerbate habitat sensitivity to changes in climate factors and disturbance 
regimes by altering forest structure, species composition, ecosystem functioning, and connectivity.  

• Fire exclusion and suppression has altered historical wildfire regimes in mixed 
evergreen/montane hardwood forests, increasing fire return intervals within the Santa Cruz 
Mountains region to over 150 years (compared to 8–12 years prior to Euro-American 
settlement)51,60. Reductions in fire frequency as a result of fire exclusion has contributed to 
shifts in fuel structure and increased fuel loading, increasing the risk that fires will be 
uncharacteristically intense when they do occur61. This is of particular concern in second-
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growth forests, where increased tree and understory density already enhances the likelihood of 
intense fires61. 

• Timber harvest has resulted in the loss and fragmentation of many old-growth mixed 
evergreen/montane hardwood forests in the Santa Cruz Mountains region51. Historical logging 
followed by decades of fire suppression has also resulted in significant shifts in forest structure 
due to higher stem densities and low structural diversity in second-growth forests, which 
reduces forest heterogeneity at the landscape scale6,62,63. 

• Invasive plants compete with or degrade native vegetation and alter soil properties, affecting 
forest structure, species composition, and ecosystem processes64,65. Within the Santa Cruz 
Mountains region, slender false brome (Brachypodium sylvaticum) is of increasing concern66. 
This aggressive perennial bunchgrass invades forest understories where it displaces native 
species, limits tree seedling recruitment, and increases fire risk by enhancing fine fuel 
availability67,68. 

• Roads, highways, and recreational trails increase habitat fragmentation and alter ecosystem 
dynamics in mixed evergreen/montane hardwood forests69,70. For example, transportation 
corridors contribute to the introduction and spread of invasive plants69,70 and are associated 
with increased fire ignitions71. Roads and trails also provide enhanced opportunities for the 
spread of sudden oak death, both because of greater air movement that increases spore 
dispersal and because spores within the soil can be transported on vehicles, footwear, and 
equipment72,73.  

• Residential development has resulted in significant forest loss and fragmentation, particularly 
in and around the growing wildland-urban interface1. 

 

Adaptive Capacity 
         

Adaptive capacity is the ability of a habitat to accommodate or cope with climate change impacts with 
minimal disruption. 

Habitat extent, integrity, continuity, and barriers to dispersal         
Mixed evergreen/montane hardwood forests are widespread within the Santa Cruz Mountains region, 
which is located at the heart of this habitat’s distribution within the state1,60. However, historical 
logging, land-use conversion, road construction, fuelbreak creation, and other human activities have 
fragmented and degraded many forest areas in the region1, reducing structural integrity and increasing 
vulnerability to disturbances such as uncharacteristically severe wildfires and severe drought31,34. Large 
areas of forest affected by severe fire or sudden oak death may also experience very slow 
regeneration, reducing habitat continuity1. Sudden oak death may create barriers to gene dispersal1, if 
the distance between increasingly fragmented tanoak patches exceeds the range of insect 
pollinators74. 
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Habitat diversity         
Mixed evergreen/montane hardwood forests in the Santa Cruz Mountains region occupy 
topographically diverse areas with varied site conditions (e.g., substrate, water balance, disturbance 
history)1,75. These factors contribute to high structural and species diversity across the landscape, 
which may support shifts in forest composition towards species adapted to warmer, drier conditions76.  

Mixed evergreen/montane hardwood forests are home to many sensitive plant and wildlife species, 
including the Kings Mountain manzanita (Arctostaphylos regismontana), California red-legged frog 
(Rana draytonii), and dusty-footed woodrat (Neotoma fuscipes)1. 

Resistance and recovery         
Resistance to climate stressors and altered disturbance regimes in mixed evergreen/montane 
hardwood forests is supported by high landscape heterogeneity, which provides varied microsites and 
areas of refugia from thermal stress, increasing climatic water deficit, and wildfire56,77,78. These refugia 
may include north-facing slopes, valley bottoms and riparian areas, sites with relatively high 
precipitation, and areas surrounding seeps, springs, and wetlands12,77,79. Stands of mature and old-
growth forest with dense, closed canopies may also provide microrefugia that could protect vulnerable 
plant and animal species from thermal and moisture stress77,78,80. 

Where structural diversity remains relatively high, a mosaic of forest patches at various successional 
stages limits the impact of disturbances at large spatial scales and supports relatively rapid recovery 
from disturbances53,81,82. However, the combined impacts of historical logging and fire suppression has 
decreased forest heterogeneity, reducing the ability of the forest to recover from future stressors and 
large-scale disturbances6,34,56. Warmer, drier conditions and altered fire regimes over the coming 
century are likely to further alter recovery rate and successional patterns, favoring increased 
dominance of shrubs and hardwoods compared to conifers21,55,56,83. 

Management potential         
Mixed evergreen/montane hardwood forests in the Santa Cruz Mountains region are highly valued by 
the public for birding and hiking opportunities1. Because this forest type is highly productive, it also 
plays a particularly critical role in carbon storage and maintaining hydrological function across the 
landscape, especially in old-growth stands80,84. However, public and societal support for management 
of mixed evergreen/montane hardwood forests is lower than for the region’s iconic redwood forests, 
and land use conflicts can occur with the timber industry1. 

Changing climate conditions are likely to make the management of mixed evergreen/montane 
hardwood forests more complex due to the increased potential for stressed forests to experience 
drastic shifts in species composition and/or large-scale dieback31,56,62. In forests that have been 
degraded and/or are threatened by climatic and anthropogenic stressors, management strategies may 
include reducing stem density85, reintroducing fire onto the landscape86–89, and supporting forest 
regeneration55. These strategies are designed to enhance forest resilience by increasing spatial 
heterogeneity and structural complexity6,31,86,87, which reduces vulnerability to large-scale disturbances 
such as uncharacteristically severe wildfire, insects, and disease87,90. For instance, the use of thinning 
from below and prescribed fire can increase tree vigor and encourage the development of larger, more 
fire-resistant trees within mature, structurally diverse forests91–94. Protecting existing late-successional 
forests and increasing connectivity between these forest patches is also critical, as they may exhibit 
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higher resistance to changing climate conditions and are likely to provide refugia for sensitive 
species77,95,96. Protection efforts could also include mid-seral and complex early-seral habitats that 
exhibit high structural diversity and the potential to develop old-growth characteristics over time95,96.  

Management efforts are unlikely to stop the spread of sudden oak death, but monitoring networks 
have allowed early detection of newly-infected areas97. Other efforts have involved surveying the area 
to determine whether naturally-occurring resistance to sudden oak death can be leveraged to aid 
conservation benefits98. Seed banks and living collections may also provide a way to preserve genetic 
diversity and allow the future reintroduction of tanoak into infected areas99. 

 

Recommended Citation 

EcoAdapt. 2021. Mixed Evergreen/Montane Hardwood Forests: Climate Change Vulnerability 
Assessment Summary for the Santa Cruz Mountains Climate Adaptation Project. Version 1.0. EcoAdapt, 
Bainbridge Island, WA. 

Further information on the Santa Cruz Mountains Climate Adaptation Project is available on the project 
page (http://ecoadapt.org/programs/awareness-to-action/santa-cruz-mountains). 
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