

American Samoa Sharks and Rays

Climate Change Vulnerability Assessment Summary

An Important Note About this Document: This document represents an initial evaluation of vulnerability for sharks and rays based on workshop input and existing information. The aim of this document is to expand understanding of species vulnerability to changing climate conditions, and to provide a foundation for developing appropriate adaptation responses.

Species Description

Common species of sharks in American Samoa include the blacktip reef shark (*Carcharhinus melanopterus*) and the whitetip reef shark (*Triaenodon obesus*). Other rarer species include hammerhead sharks, tiger sharks (*Galeocerdo cuvier*), and whale sharks (*Rhincodon typus*).¹ The most common species of rays in American Samoa are Eagle rays (*Myliobatidae* sp.). Sharks and rays are generally rare across Indo-Pacific coral reef habitats,

are not targeted by fishermen, and have been protected from catch and possession since 2012.^{1,2} Blacktip and whitetip reef sharks are commonly found in nearshore waters and sighted while diving, snorkeling, and swimming. Hammerhead sharks are known to give birth in Pago Pago Harbor, while few tiger sharks have been caught around Tutuila.¹ Increased sea surface temperatures may affect shark and ray ranges, prey availability, and embryonic development.³ Extreme precipitation events can also diminish their ability to effectively use their sense of smell and electroreception to locate prey.³

Sharks and rays were evaluated have low to moderate vulnerability by workshop participants due to climate and non-climate stressors such as ocean acidification, sea surface temperature, and changes in currents and wind. Although sharks are protected, there are threats of harvest for shark fins. Sharks are rays are impacted by the same oceanographic conditions that affect pelagic fish, and as well as by land-based stressors including coastal erosion, sedimentation, and runoff.

Sensitivity	Moderate		
	Sensitivity	Low High	High Confidence

Sharks and rays moderate sensitivity to climatic and non-climatic factors. Changes in currents can impact distribution and migratory pathways, and increased sea surface temperature may affect prey availability. Increased sea surface temperature and ocean acidification can also affect embryonic development.³

SENSITIVITY FACTORS AND IMPACTS*			
CLIMATE STRE	CLIMATE STRESSORS Moderate sensitivity		
FACTOR	IMPACT		
Ocean• Embryonic developmentacidification/ sea surface• Changes in distribution and prey availability.• Diminishing effectiveness in using their sense of smell and electroreception to locate prey./currents			
DISTURBANCE	REGIMES Low-moderate sensitivity		
Wind • Impacting circulation and distribution.			
DEPENDENCIES Low-moderate sensitivity Moderate confidence			
Habitat Prey/forage dependency/ Generalist or specialistLow dependency on sensitive habitats.• Moderate dependency on specific prey. • Mostly generalist species assemblage.			
NON-CLIMATE STRESSORS High sensitivity High confidence			
Harvest	 Illegal harvest and shark finning. 		

^{*} Factors presented are those ranked highest by workshop and field experts.

Climate change vulnerability assessment for the National Marine Sanctuary and Territory of American Samoa 2 Copyright EcoAdapt 2016

Exposure [†]	osure [†] Low-Moderate		
	Exposure	Low High	Low Confidence

Sharks and rays will experience low climate exposure in the next 20 years from increased temperatures, changes in currents/mixing, and coastal erosion and runoff.

PROJECTED CLIMATE AND CLIMATE-DRIVEN CHANGES [*]		
CLIMATE STRESSORS	PROJECTED CHANGES	
Increased sea surface	• Sea surface temperatures will increase +1.1-1.7°F by 2030.	
temperature	• Distribution affected by shifts in temperature and ocean conditions.	
Currents/Mixing		
Coastal erosion &		
runoff		

Adaptive Capacity [‡]	Moderate		
	Adaptive Capacity	Low High	Mod Confidence

Sharks and rays have moderate adaptive capacity due to relative long-range dispersal and ability to be able to move to more favorable areas. Increased sea surface temperatures may affect shark and ray ranges, prey availability, and embryonic development.⁴

ADAPTIVE CAPACITY FACTORS AND CHARACTERISTICS		
FACTOR	SPECIES CHARACTERISTICS	
Extent, status, & dispersal ability	 Long range dispersal ability. 	
Moderate-high adaptive capacity		
Moderate confidence		
Intraspecific/life history diversity	 High genetic diversity and behavioral and 	
Moderate adaptive capacity	phenotypic plasticity.	
Moderate confidence		
Resistance	 Fluctuations in sea surface temperature and ocean 	
Low-moderate adaptive capacity	acidification can impacts ability to find prey.	
Moderate confidence		

[†] Relevant references for regional climate projections can be found in the Climate Impacts Summary Table.

[‡] Please note that the color scheme for adaptive capacity has been inverted, as those factors receiving a rank of

[&]quot;High" enhance adaptive capacity while those factors receiving a rank of "Low" undermine adaptive capacity.

Climate change vulnerability assessment for the National Marine Sanctuary and Territory of American Samoa 3 Copyright EcoAdapt 2016

ADAPTIVE CAPACITY FACTORS AND CHARACTERISTICS		
FACTOR	SPECIES CHARACTERISTICS	
Management potential Low-moderate adaptive capacity	 Many sharks and rays are charismatic megafauna with high societal value, yet many misconceptions. More enforcement and broader regulations. 	

Literature Cited

- ¹ Craig, P. Editor. Natural History Guide to American Samoa. 3rd Edition. 2009. National Park of American Samoa, Department Marine and Wildlife Resources and American Samoa Community College.
- ² U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries. 2012. Fagatele Bay National Marine Sanctuary final management plan/final environmental impact statement. Silver Spring, MD. Available from http://sanctuaries.noaa.gov/management/mpr/mpr-nmsam-2012.pdf.
- ³ Hobday A.J., Griffiths S. and Ward T. 2009. Pelagic Fishes and Sharks. In A Marine Climate Change Impacts and Adaptation Report Card for Australia 2009 (Eds. E.S. Poloczanska, A.J. Hobday and A.J. Richardson), NCCARF Publication 05/09, ISBN 978-1-921609-03-9