

American Samoa Pelagic Fish Climate Change Vulnerability Assessment Summary

An Important Note About this Document: This document represents an initial evaluation of vulnerability for pelagic fish based on workshop input and existing information. The aim of this document is to expand understanding of species vulnerability to changing climate conditions, and to provide a foundation for developing appropriate adaptation responses.

Species Description

Pelagic fish species in the region are managed through the Western and Central Pacific Fisheries Commission and include migratory tunas such as the bigeye (*Thunnus obesus*), yellowfin or asiasi (*T. albacares*), albacore or apakoal (*T. alalunga*), dogtooth or tagi (*Gymnosarda unicolor*) and skipjack or atu (*Katsuwonus pelamis*).¹ Other important species include billfish (*Tetrapturus*

auda, Makaira mazara, Xiphias gladius), dolphinfish (*Coryphaena hippurus, C. equiselas*) and wahoo (*Acanthocybium solandri*).¹ Most pelagic fish prefer open ocean area and seldom come close to shore; occasionally the dogtooth tuna is seen along reef areas. Although American Samoa has a large tuna packing cannery industry (Chicken of the Sea), tuna is not particularly abundant in the region and most of the tuna canned locally use fish caught in other areas.²

Species Vulnerability

Commercially valuable pelagic fish species were evaluated to be moderately vulnerable by workshop participants due to changes in temperature, ocean circulation, and ocean acidification. Common migratory pelagic tunas have already shown responses to increased temperatures and changes in circulation patterns during El Niño Southern Oscillation (ENSO) events.^{3,4} Future changes in distribution and abundance of migratory species might result due to changes increased temperature and changes in currents affecting prey availability and thermal tolerance.

Pelagic fish have moderate to high sensitivity to climatic and non-climatic factors. Increases in sea surface temperature and currents can impact distribution and migratory pathways.

SENSITIVITY FACTORS AND IMPACTS [*]			
CLIMATE STRE	SSORS Moderate-high sensitivity Moderate confidence		
FACTOR	IMPACT		
Sea surface temperature	 Potential changes in distribution and migratory pathways 		
Currents/ stratification	Causing changes in distribution and abundance of migratory, possible range expansion.		
DISTURBANCE REGIMES High sensitivity High confidence			
FACTOR	IMPACT		
ENSO	 Increased temperature and changed in circulation and upwelling have already shown changes in distribution. 		
DEPENDENCIES Low-moderate sensitivity Moderate confidence			
FACTOR	IMPACT		
Habitat Prey/forage dependency/ Generalist or specialist	Low dependency on sensitive habitats High dependency on specific prey Mostly generalist species assemblage		
NON-CLIMATE STRESSORS Moderate-high sensitivity Image: Moderate - high confidence Image: Moderate - high confidence			
FACTOR	IMPACT		
Harvest	Targeted both commercially and recreationally.		

Exposure[†]

Pelagic fish will experience moderate exposure to increased sea surface temperature that will cause changes in currents and stratification.

PROJECTED CLIMATE AND CLIMATE-DRIVEN CHANGES [‡]				
CLIMATE STRESSORS	PROJECTED CHANGES			
Sea surface	Sea surface temperatures will increase +1.1-1.7°F by 2030.			
temperature/	• Species assemblage strongly affected by shifts in temperature and			
Currents	ocean conditions.			

^{*} Factors presented are those ranked highest by workshop experts.

[†] Relevant references for regional climate projections can be found in the Climate Impacts Summary Table.

⁺ Factors presented are those ranked highest by workshop experts, scoring 3 or above.

Climate change vulnerability assessment for the National Marine Sanctuary and Territory of American Samoa 2 Copyright EcoAdapt 2016

Adaptive Capacity[§]

Moderate-High Adaptive Capacity

Pelagic fishes have moderate-high adaptive capacity due to relative long-range dispersal migratory ability to be able to move to more favorable areas.

ADAPTIVE CAPACITY FACTORS AND CHARACTERISTICS			
FACTOR	SPECIES CHARACTERISTICS		
Extent, status, & dispersal ability	 Some species are highly threatened such as 		
High adaptive capacity	billfishes and Bluefin tuna		
High confidence	 Long range dispersal ability 		
Intraspecific/life history diversity	 High diversity and plasticity 		
High adaptive capacity			
Moderate confidence			
Resistance	 Exhibit moderate resistance to climatic and non- 		
Moderate adaptive capacity	climatic impacts		
High confidence			
Management potential	 Highly valuable species assemblage for both food 		
Moderate-high adaptive capacity	source, recreation, and culturally important		
High confidence	 Quota changes in fisheries management 		
-	regulations		

Literature Cited

- ¹ Craig, P. Editor. Natural History Guide to American Samoa. 3rd Edition. 2009. National Park of American Samoa, Department Marine and Wildlife Resources and American Samoa Community College.
- ² U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries. 2012. Fagatele Bay National Marine Sanctuary final management plan/final environmental impact statement. Silver Spring, MD. Available from http://sanctuaries.noaa.gov/management/mpr/mpr-nmsam-2012.pdf.
- ³ Leong, J.-A., J.J. Marra, M.L. Finucane, T. Giambelluca, M. Merrifield, S.E. Miller, J. Polovina, E. Shea, M. Burkett, J. Campbell, P. Lefale, F. Lipschultz, L. Loope, D. Spooner, and B. Wang. 2014. Ch. 23: Hawai'i and U.S. Affiliated Pacific Islands. Climate Change Impacts in the United States: The Third National Climate Assessment, J.M. Melillo, T.C. Richmond, and G.W. Yohe, Eds., U.S. Global Change Research Program, 537-556.
- ⁴ Keener, V.W., J.J. Marra, M.L. Finucane, D. Spooner, and M.H. Smith (Eds.). 2012. Climate Change and Pacific Islands: Indicators and Impacts. Report for The 2012 Pacific Islands Regional Climate Assessment. Island Press, Washington, D.C.

 [§] Please note that the color scheme for adaptive capacity has been inverted, as those factors receiving a rank of "High" enhance adaptive capacity while those factors receiving a rank of "Low" undermine adaptive capacity.
 Climate change vulnerability assessment for the National Marine Sanctuary and Territory of American Samoa 3
 Copyright EcoAdapt 2016